¢ PLDshell
Plus-/
PLDasm-

USER’S GUIDE

UNIVERSAL PLD DESIGN/SUPERVISOR SOFTWARE FROM INTEL

PLDshell Plus"/PLDasm™
User’s Guide

V2.1

Copyright © 1992, Intel Corporation
Order Number: 468816-002

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital Studio,
DVI, EtherExpress, ETOX, FaxBACK, Grand Challenge, i, i287, 1386, i387,
1486, 1487, 1750, 1860, 1960, ICE, iLBX, Inboard, Intel, Intel287, Intel386,
Intel387, Intel486, Inteld87, intel inside., Intellec, iPSC, iRMX, iSBC, iSBX,
iWARP, LANPrint, LANSelect, LANShell, LANSight, LANSpace, LANSpool,
MAPNET, Matched, MCS, Media Mail, NetPort, NetSentry, OpenNET,
PRO750, ProSolver, READY-LAN, Reference Point, RMX/80, SatisFAXtion,
Snapln 386, Storage Broker, SugarCube, The Computer Inside., TokenExpress,
Visual Edge, WYPIWYF.

MDS is an ordering code only and is oot used as a product name or trademark. MDS is a registered
trademark of Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel’'s FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc.
or its FASTPATH trademark or products.

PLDshell Plus and PLDasm are also trademarks of Intel Corp.

PLDshell Plus has patents pending.

PAL and PALASM are registered trademarks of Advanced Micro Devices, Inc.
GAL is a registered trademark of Lattice Semiconductor, Inc.

The installation program’ used to install PLDshell Plus, INSTALL, is based on licensed software
provided by Knowledge Dynamics Corp, Highway Contract 4 Box 185-H, Canyon Lake, Texas
78133-3508 (USA), 1-512-964-3994. INSTALL is Copyright © 1987-1990 by Knowledge Dynamics
Corp which reserves all copyright protection worldwide. INSTALL is provided to you for the
exclusive purpose of installing PLDshell Plus. Intel has made modifications to the software as
provided by Knowledge Dynamics Corp. and thus the performance and behavior of the INSTALL
program shipped with PLDshell Plus may not represent the performance and behavior of INSTALL as
shipped by Knowledge Dynamics Corp. Intel is exclusively responsible for the support of PLDshell
Plus, including support during the installation phase. In no event will Knowledge Dynamics Corp be
able to provide any technical support for PLDshell Plus.

PLDshell Plus contains portions of Vermont Views™ software Copyright 1988, 1990 Vermont Views
Creative Software. All rights reserved. Vermont Views is a trademark of Vermont Creative Software.

Table of Contents

Getting Started
Invoking PLDshell Plus it GS-1
Sample Design —4-BitCounter GS-2

Chapter 1 - Introduction

PLDshell PIlus™ OVErVIEW ot v v v ittt e s e e et et e e e e 1-2
PLDasm™ Design Compilation Overview 1-3
JEDEC Disassembly Overview o it i i it e et e e e 1-6
JEDEC Conversion OVEIVIEW v v v v v v v v vt v e e i e an oo e e e s s 1-7
ADF/SMF Translation OVErVIEW v v v v i v v vt e v e i e o e e e e n s 1-8
Higher Performance Design Tools 1-8
Chapter 2 - Installing PLDshell Plus/PLDasm
System Requirements 2-1
Installation i e e e e e e e e 2-1
Installation NOtESt v i v ittt et e e e e e e 2-2
Configuration Notes — Windows 3.0 2-3
Chapter 3 - Using PLDshell Plus/PLDasm
Invoking PLDshellPlus i, 3-1
PLDshell Plus MENUS v i ittt ittt v et e e e a e e nae e 3-1
Main MENU it ittt et it e e e 32
EditMenu ottt e e e e e e e e e e 34
Compile/SIMMenu oo v vttt e e e 3-5
ViewMenuttt e e e e 3-10
VIEWEINOLES . . v v v it et e it et et et e e e e 3-15
ProgramMenu e 3-16
RunMenu ittt it it ettt et e e 3-17
Utiliies Menu ot it ittt et e e e 3-20
Databook MENU o v v vt e e it e e e e e e e e 3-26

PLDshell Plus/PLDasm User’s Guide iii

Chapter 4 — PLDasm Files and Language

PLDasmFiles ot i it e e e e e e e 4-1
COMMENLS . . .t v vttt ittt ettt e e e e e e e e e 4-1
Legal Signal Name Characterst vv vt eennnnnn 4-1
Declaration Section e e e 4-1

Basic Circuit Design Using Boolean Equations 4-6
Combinatorial Circuits o v i it et e e e e 4-6
Active-High/Active-Low Outputso v v v v i it i i e 4-7
OutputEnable 4-8
Registered Circuitso i it i i i e 4-9

Using Additional Features 4-12
Asynchronous Clocking i i e 4-12
PresetP-Term0ttt i i e 4-12
Clear P-Term. oot it it e e it it it e e e 4-12
ToggleFlip-Flops o i ittt it i e i 4-13
JKFIHP-FIOpS . . . o o ot e e e e e e e 4-14
SRFLp-Flops ittt et 4-14
Using Global Set/Reset Signals vt 4-14
Implementing Alternate /OOptions 4-15
Automatic Pin Assignments0t et 4-18
Bidirectional /O e e 4-19
Dual Feedback/Buried Macrocells 4-20
Dual Feedback with Bidirectional /O 4-20
P-Term Allocation 0 v v ittt et i e e 4-21
Using Disconnected Macrocells 4-23
Using Programmable Inputs 4-24
Altering Set-Upand Hold Times 4-25

Truth Table Design o i e 4-27

State Machine Design e e 4-28
Simple Moore State Machine Example 4-29
State Machine Format (Moore Machine) 4-30
Mealy State Machine Example 4-36

iv PLDshell Plus/PLDasm User’s Guide

Chapter 5 — Compiling and Simulating

Design Methodology o vt i it e e e e 5-1
Device-IndependentDesign 5-2
Sample Design i e e e e e 5-2
Device-Independent DesignNotes 5-5
Device SpecificDesign e 5-6
Design-SpecificDesignNotes, 57
Using the PLDasm Compiler Options v v v v e vnenn.n 5-8
Using the Simulation Options oo ittt i it i 5-11
Viewing Simulation OutputFiles 5-11
SimulationNotes e 5-13
Test VECIOr NOIES v v v vt ettt et e e 5-14

Chapter 6 — Using the Utility Programs

Disassembly i e e e 6-1
DisassemblyNotes LS 6-3
JEDEC CONVErSION . . . ¢ v v vt vt v ittt e ot a e ettt enee s 6-4
ConversioN NOES v v v vt i e e e e e e 6-5
Translation o e e e 6-7
Example Translation 6-7
Translation Noteso ottt i e e 6-8

Chapter 7 — Device Descriptions

Device Names/Feature SUMMAry v v v v vttt v o v v v o e v v o v awan 7-1
850220 . v i e e e e e e e e e e e e 7-5
850224 e e e e e e e e e e 7-6
iPLD22VI10/85C22VI0 . . . o vt i et e e e e e e e e 7-8
iPLD610/85CO60 it i e e e e e e e e e 7-11
PPLDI10/8SCO%0 . . . o i it e e e e e e e e e e 7-14
850508 . . e e e e e e e e e 7-18
SAC3I2 ... e e e e e e e e e e 7-19
SAC3 24 . L e e e e e e 7-23

PLDshell Plus/PLDasm User’s Guide v

L1 72 7-31
1 7-33
SC000 . vt e e e e 7-36
SCI80 . & v i e e e e e 7-39

Chapter 8 - Design Checklist

DesignChecklist it i e e 8-1

Chapter 9 — Sample Designs

Appendix A - Language Reference Summary

Keywordsand Reserved Words A-1
Boolean Operators vt v v vt v it e A-2
Signal EXtensions oo v it i e e e e e A-2
Conditional Operators (SimulationOnly) A-3

Appendix B - Utilization Report

Utilization Report SECHONS o i i it it it it e e B-1
Headerand Source Listing o i i it ittt ittt it B-2
PInConnections . . . v v v v v v v v i et e e e e e e e B-2
InputsTableo i ittt i e e e e e e B-2
OutputsTable i e e B-3
Unused RESOUICES . . v . v v it it vt i ottt v ettt et oottt en e B4
Part UtiZation o v ittt i et ittt et i it B-5
Macrocell Interconnection Cross Reference B-5

Appendix C - PLDshell Configuration File

Appendix D - Command Line Interface

CommandLineInterface D-1
Compile Commands and Options vt vt v v v v e v v n.. D-2
Compilation Exampleso v i vt ittt e D-3
Disassembler Commands and Options« oo v v v v i it e D4
Disassembly Example ittt e D-4

vi PLDshell Plus/PLDasm User’s Guide

Conversion Commands and Options v v v v v v vt vt i D-5

ConversionExamples D-5
Translation Commandsand Options, D-6
TranslationExamples o oo D-6

Appendix E — APT Description

Overview Of APT i e e e e e E-1
Sample Session: Programming a85C224 yPLD E-2
APTFiles e e e e e e E-8
Command Line Invocation E-9
SessionDefaults E-10
APTEmOrMessages . . . v v v v v v vt o vttt e e et ettt e e e E-11
Filename Conventionsot i i v it it i i e e e E-11
APTCommands v vt vt it it it it et e e E-12
Command ArgUIMENtS v v vt vttt ittt e e E-12
Defaults/ConfigurationFile i E-31
Appendix F - Basic PLD Information
What Are PLDS? i e e e e e F-1
Basic Architecture of PLDs i e F-1
Why Use PLDS?ottt it et e et e e et st e e F-2
PLD Design Process v v v v v it it it i it e e F4

PLDshell Plus/PLDasm User’s Guide vii

viii PLDshell Plus/PLDasm User’s Guide

Getting Started

Before using the instructions in this section, refer to Chapter 2, “Installing PLDshell
Plus/PLDasm.”

Invoking PLDshell Plus

After the installation is complete, type

PLDSHELL <Enter>

Press <Enter> at the sign-on screen and you will see the main menu as shown in Figure
GS-1. To select a menu item, use the < and — cursor keys to highlight that item, such

as Edit, and press <Enter>. Alternatively, you can type the first letter of the menu
selection, such as 'E’ for Edit.

" INTEL's PLDshell Plus [Ux.y 1 SID [Ux.y 1
Edit or Create a Text File

Edit ConpilesSin Uleu Progran Run Utilities

Figure GS-1. PLDshell Plus™ Main Menu

PLDshell Plus/PLDasm User’s Guide GS-1

S
Q
2
=
5
W
o
£
=
Q
S

T
@
2
=4
I
P
7]
o
£
=
o
]

Sample Design — 4-Bit Counter

This section is a step-by-step tutorial on creating and compiling a design using PLDshell
Plus/PLDasm. The example design is a simple 4-bit synchronous counter targeted for an
Intel 85C224 uPLD. You can start at step 1 to create the PLDasm source file as de-
scribed here and compile it to produce a JEDEC file. You can also use the sample file
(4COUNT.PDS) installed with the software; in this case skip to step 6 and run the
compiler. Proceed as follows:

Step 1: Header and Declarations

Open a source file using the Edit option. Press <F6> and enter the name of the file you
wish to create with the extension .PDS then press <Enter>. Pick a base filename that
does not conflict with 4COUNT.

Create header and declarations sections that contain the following information:

Title 4-Bit Counter Sample File
Pattern pds

Revision 1

Author Your Name

Company Your Company

Date Date

CHIP 4_count 85C224
Step 2: Pin Names/Assignments
Enter the pin numbers and pin names for the design as follows:

; pin assignments

PIN 1 CLK ; clock pin

PIN 2 ENA ; counter enable
PIN 15 QA ; LSB

PIN 16 QB

PIN 17 QcC

PIN 18 QD ; MSB

GS-2 PLDshell Plus/PLDasm User’s Guide

Step 3: EQUATIONS Section

The four outputs of the counter (QA-QD) are implemented using Boolean equations.
Enter the keyword ‘““EQUATIONS”’ followed by the actual equations as shown below.
The name on the lefthand side is the output name. The ‘‘“:=’’ characters specify the
output as a registered output. The names and symbols on the righthand side are the
equations that implement the circuit. (Type the first equation as shown; the period be-
tween the Q and the A is an intentional error. It will be corrected during a later step. A
sample file containing this error is shipped with the software; it is called 4ERROR.PDS)

; Boolean equations for registers

EQUATIONS
QA := ENA * /Q.A
QB := ENA * QB * /QA
+ ENA * /QB * QA
QC := ENA * QC * /QA
+ ENA * QC * /QB
+ ENA * /QC * QB * QA
QD := ENA * QD * /QA
+ ENA * OD * /OB
+ ENA * QD * /QC
+ ENA * /QD * QC * QB * QA

Step 4: Starting the SIMULATION Section

The Simulation section allows you to specify a functional simulation sequence for your
designs. Enter the keyword ‘“‘SIMULATION”, followed by simulation commands. The
first set of commands assigns a vector, specifies signals to be output to a trace file, and
sets the counter inputs and registers to known states (ENA = high, CLK = low, register
outputs set low). Clock and control signals should always be set before using the preload
(PRLDF) command. The next set defines a loop in which the counter is clocked four
times.

; set up vector and trace
; set to known state, preload registers (all low)

VECTOR COUNT := [QD QC QB QA]

TRACE_ON ENA CLK QD QC QB QA

SETF ENA /CLK

PRLDF /QA /QB /QC /QD ; clock set before
; preload command

; count 4 times

FOR X := 0 TO 3 DO
BEGIN
CLOCKF CLK
END

PLDshell Plus/PLDasm User’s Guide GS-3

Step 5: Completing the SIMULATION Section

The Simulation section is completed in two parts. First, ENA is brought low and the
circuit is cycled through four clocks to test the enable signal (with ENA low the circuit
resets to zero on the next clock and does not count on subsequent clocks). Then, ENA is
brought high again and the counter is clocked ten more times.

. Ge(iing Started

!
e
i
]

; disable counting, then try 4 more times

SETF /ENA
FOR X := 0 TO 3 DO
BEGIN
CLOCKF CLK
END

; enable counting, then count 10 times

SETF ENA
FOR X := 0 TO 9 DO
BEGIN
CLOCKF CLK
END
TRACE_OFF

; end of simulation
Step 6: Running the Compiler

Save the design file, using the appropriate save command for your text editor. Press
<Enter> when prompted to return to PLDshell Plus.

Select the Compile/Sim option from the PLDshell Plus menu (see Figure GS-2). Move
to Accept and press <Enter> or press <F10> to accept the default compile and simula-
tion conditions (the defaults are described in Chapter 5).

The PLDasm compiler runs, but since an (intentional) error exists, the compiler aborts,
displaying an error message. (If you have skipped the previous steps and are using
4COUNT.PDS, this error will not be displayed. You can compile 4ERROR.PDS to gen-
erate this error if desired.)

GS—4 PLDshell Plus/PLDasm User’s Guide

)

INTEL's PLDshell Plus Ux.y 1 SID [Ux.y 1

Compile Source to JEDEC File/Simulate a Design 1> for Help|
Edit Compile/Sin Ulew Progran Run Utilities Databook Quit

PLDasn

Source Filename @ = PDS

Processing ¢ Compile Then Simulate
Campi ptions Simulation Options

ESC Cancels F18 Accepts SPACE Lists

Figure GS-2. PLDshell Plus Compile/Sim Menu

Step 7: Viewing the Error File

Press ESC to move back to the main menu. Select the View option from the PLDshell
Plus menu, then select Error/Log Files.

Choose the error file that has the same base name as the source file with the ERR
extension and press <Enter>. All error messages are displayed (see Figure GS-3).

INFO PARPDS: Parsing file: 4ERROR.PDS.

ERROR E4304-PDSTODDB: 1Invalid pin name on line 23 at *.”.

ERROR E4340-PDSTODDB: Incorrect equal operator on line 25 at “QB”*.
INFO PARPDS: (0) warning(s), (2) fatal error(s).

Figure GS-3. Error File Listing

Move to the first error message and press <F10>. The help message for this error is
displayed. The help message also recommends a course of action to correct the error.

Step 8: Revising the Source File

Press ESC three times to move back to the main menu. Use the Edit option to open the
source file.

PLDshell Plus/PLDasm User’s Guide GS-5

Getting Started

Remove the period from between the Q and the A in the first equation. Save the design
and exit the text editor.

-
2
=
Q
8
(72
o
£
=
]
4

Step 9: Recompiling the Design

Press ESC to move back to the main menu. Select the Compile/Sim option and recomp-
ile the design to product a JEDEC file. Press <Enter> when done to move to the Main
Menu.

Step 10: Viewing the Simulation History File

Select the View option from the main menu, then select Vector/Waveform Files.
Choose the simulation history file for the design (same base name as the source file with
the .HST extension) and move to Accept and press <Enter> or press <F10>.

View the simulation results (see Figure GS-4). You can move about in the waveform by
using the cursor keys. The plus “+" and minus “~" keys allow you to zoom in and out.

~ R

<F1> for Halp)

TTT T
<Esc) to Exit

N\ Y,

Figure GS-4. PLDshell Plus Compile/Sim Menu

GS-6 PLDshell Plus/PLDasm User’s Guide

Step 11: Programming a Device

Press ESC twice to return to the main menu. Select the Program option. If a program-
mer is connected to the system and programming software is installed, you can invoke
the programming software from this submenu to program a device. APT (Intel’s Ad-
vanced Programming Tool) is the default.

If you have not accessed this menu before, you should select your programming soft-
ware using the Change Programming S/W button before attempting to program devices.
Use the | cursor key to move to the Change Programming S/W button and press
<Enter>. When the Configure Program screen is displayed, with the cursor in the Pro-
gramming S/W field, type the name of the programming software you want to use. If
you want this to be the start-up option, move to the Save Options button and press
<Enter>. Otherwise, press <F10> or move to the Accept button and press <Enter>.

Press <ESC> to return to the main menu. Press <Q> to Quit, press “Y” or <Enter> and
return to DOS.

This ends the sample session.

PLDshell Plus/PLDasm User’s Guide GS-7

o
o
2
=
53
ot
n-
o
£
S
=

- Q
Q.

-
.‘:_E R
8,
(7]
Lo
-3
S -
e

GS-8 PLDshell Plus/PLDasm User’s Guide

Chapter 1 - Introduction

PLDshell Plus™ provides an easy-to-use menu system for PLD design that allows you
to invoke Intel’s PLDasm™ compiler and programming software, or your existing PLD
logic compilers and programming software. Configure the menu system with the pro-
gram and directory names of your existing PLD design tools and you are ready to run
from PLDshell Plus. The PLDshell Plus main menu (shown in Figure 1-1) is arranged to
follow the typical PLD design flow: Edit, Compile/Sim, View, and Program.

c
]
=
Q
3
o
o
2
S
£

-

Edit or Create
Edit

Figure 1-1. PLDshell Plus™ Main Menu

PLDasm is a logic compller and functional simulator that runs under PLDshell Plus.

PLDasm compiles PALASM® 2-compatible source files to produce JEDEC files for Intel
UPLDs. This allows you to use a familiar design language to evaluate the architecture of
Intel uPLDs and to implement new designs.

£5 ot 1
This gunuc is written for m\ycucuwd logic designer ’s who are using Intel uPLDs. If you

are new to designing with PLDs, an orientation is provided in Appendix F, “Basic PL
Information.”

PALASM is a registered trademark of Advanced Micro Devices, Inc.

PLDshell Plus/PLDasm User’s Guide 1-1

e
]
2
o
3
g
<]
g
=
=

PLDshell Plus™ Overview

As shown in Figure 1-2, PLDshell Plus menu options allow you to:
* Edit PLD source files using your preferred text editor.

e Compile and simulate source files to produce JEDEC programming files for Intel
WPLD devices.

* View error message, report, and waveform files for designs
¢ Program devices using Intel’s APT software on Intel programmers (programming

hardware not included) or your preferred programming platform (using your existing
programming software/hardware).

PLDshell Plus MENU OPTIONS

eoir |COMRLE/ | viEw |PROGRAM| RUN | UTILTIES |DATABOOK

VIEW Enfon,
CREATE AND PLDesm AUN CONVERT, BRIEFS, TECH.
REVISE COMPILER w Avu-onu PROGRAM oTHER TRANSLATE, NOTES, COM-
lg:ﬂc" SIMULATOR AND OTHER DEVICES PROGRAMS AND OTHER Hl-.i:i:ggvﬁ
PLEs ynunes ORDER CODES

F100506

Figure 1-2. PLDshell Plus Menu Options/Functions

¢ Run other PLD design tools or programs.

* Run utilities that allow you to disassemble JEDEC files for supported devices into
PLDasm source files for lntel UPLDs (JEDEC file to PLDasm file), or to perform a
full conversion (PAL®/GAL® JEDEC file to Intel UPLD JEDEC file).

¢ Translate ADF/SMF files from Intel’s iPLS II Programmable Logic Software into
PDS files so you can take advantage of the extensive simulation benefits and
ease-of-use of PLDshell Plus and PLDasm.

* View datasheet briefs for Intel uPLDs and other technical information.

PAL is a registered trademark of Advanced Micro Devices, Inc.
GAL is a regi d trad, k of Lattice Semicond! Inc.

1-2 PLDshell Plus/PLDasm User’s Guide

PLDasm™ Design Compilation Overview

PLDasm compiles PALASM 2-compatible source files to produce JEDEC files for all
Intel pPLDs. Figure 1-3 shows how the PLDasm compiler fits into the overall PLD

design flow.
=
PLDSHELL MENU OPTIONS S
[3}
COMPILE/SIM 3
EDIT L Do) VIEW PROGRAM 3
[~
CRERAETVEISAEND ;"Eivg:?:‘i‘% PROGRAMMING
SOnRcE OTHER FILES SOFTWARE

- DESIGN

COMPILATION/
CONVERSION
AND

J
SIMULATION EDEC

FILE

F100507

Figure 1-3. PLDasm Design Compilation Flow

The typical design process is to create the source file, compile/simulate the design to
create a JEDEC file, and program devices. Error, report, and waveform files are viewed
throughout the cycle. The edit/compile/simulate/view process is repeated until a design
is working as desired. Devices are programmed at the end of the cycle. PLDasm offers
the following features:

¢ Preserves your investment in leaming a PLD design language and in developing
source files by compiling an industry-standard language.

¢ Implements designs using Boolean equations, State Machine syntax, or Truth Tables
(Truth Table design is a PLDasm superset feature).

¢ Functionally simulates designs.

¢ Maps designs into device resources and performs extensive logic minimization using
the ESPRESSO myv-II* logic minimization algorithm.

* ESPRESSO mv-11 is copyrighted by the University of California Regents, Berkeley

PLDshell Plus/PLDasm User’s Guide 1-3

* Generates JEDEC programming files; these files include programming test vectors
based on simulation output.

You can also compile .PDS files for common PAL/GAL devices using PLDasm.
PAL/GAL designs are transparently converted into JEDEC files for the appropriate Intel
HPLD. Table 1-1 lists the devices and packages supported in source files and the de-
vices/packages to which they are compiled/converted in JEDEC files.

Find

£

Introduction -

%
&
i

¥.
¥
'S
B
£

P

1-4 PLDshell Plus/PLDasm User’s Guide

Table 1-1. Supported PLDs

Intel uPLD Compiled To For JEDEC
iPLD610 iPLD610
iPLD910 iPLD910
iPLD22V10 iPLD22V10
85C220 85C220 S
85C224 85C224 E
85C060 85C060 5
85C090 85C090 B
85C22V10 85C22V10
85C508 85C508
5AC312 5AC312
5AC324 5AC324
5C031 5C031
5C032 5C032
5C060 5C060
5C090 5C090
5C180 5C180
Other PLDs Compiled To For JEDEC
16L8
16R4
16R6 85C220
16R8
16V8
20L8
20R4
20R6 85C224
20R8
20v8
22V10 iPLD22V10
22VP10 85C22V10
Not supported by PLDshell Plus. Use
iPLD16V8XP 16V8 JEDEC file and cross programming
algorithm on Data /O or other programmer.
Not supported by PLDshell Plus. Use
iPLD20V8XP 20V8 JEDEC file and cross programming
algorithm on Data I/O or other programmer.

PLDshell Plus/PLDasm User’s Guide 1-5

JEDEC Disassembly Overview

Under the Utilities Menu, PLDshell Plus provides the ability to disassemble existing
JEDEC files for the supported Intel uPLDs, as well as for common 20-pin and 24-pin
PALs and GALs into PLDasm source files (refer to Figure 1-4). Disassembly is sup-
ported for Intel UPLDs and PAL/GAL devices listed in Table 1-1. JEDEC disassembly
allows you to reconstruct source files for existing designs where the original source files
have been lost, or to generate source files from existing designs to be modified for new
designs.

13
2
2]
F-0]
3
Vg
]
-
-

JEDEC disassembly is available via the Utilities — Disassemble menu selections. Note
that the source file output during the disassembly process is for the respective Intel
MPLD.

JEDEC SOURCE
FILE FILE

JEDEC
-JED DISASSEMBLY

— b —

16L8)
16R4
16R6 > SOURCE CREATED FOR 85C220
16R8
16V8’

2018)
20R4
20R6 > SOURCE CREATED FOR 85C224
20R8
20vs |

22V10 — SOURCE CREATED FOR iPLD22V10
22VP10 — SOURCE CREATED FOR 85C22V10

INTEL JEDEC FILES CREATE SOURCE FILES FOR INTEL DEVICES

F100474

Figure 1-4. JEDEC Disassembly to PLDasm Source File

1-6 PLDshell Plus/PLDasm User’s Guide

JEDEC Conversion Overview

Under the Utilities Menu, PLDshell Plus provides the ability to convert existing JEDEC
files for common PALs/GALs into JEDEC files for Intel puPLDs. A PLDasm source file
is automatically generated during the conversion process (see Figure 1-5). Conversion
guarantees that the target Intel uPLD is functionally the same as the original design.
Table 1-1 lists the devices supported by conversion.

JEDEC conversion is available via the Utilities — Convert menu selections.

c
]
2
Q
3
°
-]
2
=
£

JEDEC JEDEC
FILE FILE

DESIGN
CONVERSION

PLDasm SOURCE FILE

16L8
16R4
16R6 > DESIGN CONVERTED TO 85C220 JEDEC
16R8
16v8

20L8
20R4
20R6 > DESIGN CONVERTED TO 85C224 JEDEC
20R8
20v8

F100509

Figure 1-5. JEDEC Conversion

PLDshell Plus/PLDasm User’s Guide 1-7

ADF/SMF Translation Overview

PLDshell Plus bas the capability to translate ADF/SMF files into PDS files that can be
compiled by PLDasm. Figure 1-6 illustrates the process. SMF files are processed
through an intermediate program called iSTATE into ADF files. ADF files are then
translated into PDS files. Translation is available via the Utilities — Translate menu
selections.

e
g
°-
=
L
o
&=
=
=
<

ISTATE Translate

F100524

Figure 1-6. ADF/SMF Translation into PDS Files

Higher Performance Design Tools

Higher performance design tools are available to speed your design efforts and/or allow
you to squeeze more functionality into a target device. Please ask your local Intel au-
thorized sales office for information on tools that provide:

¢ Schematic entry

¢ Timing simulation

¢ Board-level simulation

Some of these tools are available from Intel; others are available from third-party com-
panies that speciaiize in design toois.

1-8 PLDshell Plus/PLDasm User’s Guide

Chapter 2 - Installing PLDshell Plus/PLDasm

System Requirements

PLDshell Plus is designed to work in systems configured as follows:

.

IBM-compatible PC/AT or PS2 with 640K bytes of RAM
MS-DOS V3.1 or later

High-density (1.2 Megabyte) diskette drive; call Intel’s EPLD Hot Line or your Intel
field sales representative for other disk formats.

Hard disk with approximately 5-Megabytes of space (4-Megabytes for installation; up
to 1-Megabyte for working files while running).

A Hercules, EGA, or VGA monitor/video card are required to view simulation
vectors as waveforms.

Installation

Install PLDshell Plus as follows:

1.

Insert diskette #1 into the A: drive of your system. Type:
A:INSTALL<Enter>

As the INSTALL program begins executing, it displays system resources and
prompts you for information such as the target drive, target directory, etc. You can
press <Enter> to accept each default or can specify different names/values.

INSTALL prompts you for the name of your text editor. You can type the name and
press <Enter> or just press <Enter> to accept the default. EDIT (DOS 5.0 editor) is
the default editor name.

INSTALL displays messages as it expands archived files and copies those files to
the target drive and directory. INSTALL prompts you to insert the next disk.

INSTALL prompts you before changing your AUTOEXEC.BAT and CONFIG.SYS
files. If your prefer, you can skip these steps and make these changes via your text
editor. The following changes should be made to the CONFIG.SYS file:

FILES=20
BUFFERS=15
DEVICE=C:\PLDSHELL\STDWOUT.SYS

PLDshell Plus/PLDasm User’s Guide 2-1

-
6]
=
8
]
S
@
£

c
]
g
S
]
8
w
e -

6.

The number for FILES and BUFFERS can be set higher, but should not be set
lower. This example assumes that C:\PLDSHELL\ is the install drive and directory.
Include your actual install drive and directory.

The following line must appear in your AUTOEXEC.BAT file:

SET PLDSHELL=C:\PLDSHELL\PLDSHELL.CFG
This example assumes that C:\\PLDSHELL\ is the install drive and directory.
Include your actual install drive and directory. Do not include spaces before or after
the equal sign.

Reboot your system to load the modified AUTOEXEC.BAT and CONFIG.SYS file.
You can now run PLDshell Plus/PLDasm.

Please refer to the following section if you encounter any problems installing PLDshell
Plus.

Installation Notes

The following notes provide additional installation information:

1.

Do not install PLDshell Plus in the same directory as iPLS II (Intel Programmable
Logic Software II). Some executable names are the same; iPLS II executables can
be overwritten.

If during system reboot, you encounter “Out of Environment Space” messages, you
should increase your environment space. Include the SHELL command in your
CONFIG.SYS file, as follows:

SHELL=C:\COMMAND.COM /P /E:2048

where 2048 designates memory to be reserved for environment space. The number
2048 is only an example; a recommended number is 1024 bytes higher than the
current number. Do not include spaces before or after the equal sign. Reboot your
system to load the modified configuration file.

DOS recognizes only the first 127 bytes of a PATH command in an
AUTOEXEC.BAT file. Please note this DOS limitation. If you are encountering
search path problems when running PLDshell Plus, you should shorten your PATH
command by removing some paths. You can still run programs no longer on the
path by including them in the Run menu. With DOS 5.0 you can include APPEND
statements in your AUTOEXEC.BAT file to search additional paths for files. Refer
to you DOS User’s Guide for details.

When installing PLDshell Plus on network systems, create local configuration files
for each user. Make the PLDshell Plus install directory on the network drive

2-2 PLDshell Plus/PLDasm User’s Guide

read-only to avoid accidental modifications to executable and library files. A local
AUTOEXEC.BAT file, for example, should contain the following line pointing to
the local configuration file (C: is the local drive):

SET PLDSHELL=C:\NETUSER\PLDSHELL.CFG

Two variables in the local PLDSHELL.CFG should point to the executable and
library files residing on the network drive, as shown below (F: is the network
drive):

IPLSPATH F:\PLDSHELLW\
INCLUDE F:\PLDSHELL\W

It is recommended that PLDshell Plus be installed over PLDshell (if you have the
original product). If you do install PLDshell Plus on a system where PLDshell is
also present (i.e., in a different directory), make sure you create batch files to
set/reset the PLDSHELL environment variable to point to the correct configuration
file. You also need to change the order of both directories in the search path to
ensure proper operation. This can also be included in the batch files.

Note that the modifications to the CONFIG.SYS and AUTOEXEC.BAT files are
made as additions to the end of the existing files. If the boot procedure already turns
control of the system over to an application program via the CONFIG.SYS or
AUTOEXEC.BAT file, these additions may never be executed while booting your
system. If this is the case, PLDshell Plus will not run. To correct this problem, edit
your files to change the order of the PLDshell Plus variables.

Configuration Notes — Windows 3.0

PLDshell Plus will function with Windows 3.0 using the DOS shell. You can do this by
using the Program Manager:

1.

2.

Select File/New in the Program Manager dialog box.
Enter a descriptive name in the Description field.

Enter the command line (including the path name) that will run PLDshell Plus, in
this case “C:\PLDSHELL\PLDSHELL".

If you wish, you can select an icon from the icons provided by Windows to use to
run PLDshell Plus from the Program Manager.

NOTE
The Windows 3.0 mouse movement does not function with the

PLDshell Plus menus. You must use keyboard commands and keys
with PLDshell Plus under Windows 3.0.

PLDshell Plus/PLDasm User’s Guide 2-3

n
vl

2

[
=
i)

=
=
@
£
P
‘i,

2-4 PLDshell Plus/PLDasm User’s Guide

Chapter 3 — Using PLDshell Plus/PLDasm

This section describes invoking PLDshell Plus and the various menu options.

Invoking PLDshell Plus

To invoke PLDshell Plus, from the install directory type:

PLDSHELL <Enter>

PLDshell Plus Menus

The following guidelines will help you use the menus and submenus:

<F1> provides Help information.
Menu options are selected (1) by using the « and — cursor keys to highlight a
menu, then pressing <Enter>, or (2) by typing the first letter of a menu option.

Submenus use the T and 4 cursor keys (and <Enter>) or the first letter of the
submenu.

<Enter> executes submenus that do not have options. <Enter> also accepts fields that
require information such as file names.

<F6> clears fields that include text strings (part names, file names, etc.).

<F9> prints from the View and Databook menus.

<F10> accepts/executes submenus.

The space bar toggles between options where only two choices are available.

The space bar also displays a list of options where more than two are available.
Using the T and { keys will move the cursor through the options. Pressing <Enter>
selects a highlighted option.

Text in option fields, such as file names, can be entered and changed using
alphanumeric, backspace/delete, and cursor keys.

Home/End keys move to the top or bottom of the file in the View and Databook
menus.

PgUp/PgDn allow you to quickly scroll the screen in the View and Databook menus.

PLDshell Plus/PLDasm User’s Guide 3-1

° Some menus and submenus have Accept and Cancel buttons as well as other
buttons. Use the T and | or « and — cursor keys to highlight these buttons and
press <Enter> to activate. Pressing <F10> is the same as Accept; pressing <ESC> is
the same as Cancel. Use of Accept for changing options is limited to the current
PLDshell Plus/PLDasm session. To set new start-up default values, when available,
select the appropriate Save button (e.g., Save Compile Options), followed by Accept
or <F10>.

Main Menu

PLDshell Plus supports the following functions from the Main Menu (Figure 3-1).

~ ™

INTEL's PLDshell Plus [Ux.y 1 SID [Ux.y 1
Edit or Create a Text File F1> for Help|
Edit Compile/Sin Vieu Progran Run Utilities Databook Quit

Figure 3-1. PLDshell Plus Main Menu

Edit — Edit source files or any text file using your preferred ASCII text editor.

Compile/Sim — Compile and simulate PLDasm source files to create JEDEC
files for target Intel WPLDs. You can define compile/simulate options.

View — View PLD source, error, report, or simulation files to quickly locate
design or fitting problems.

When viewing an error file, you can move to the desired message and

press <F10> to display on-line error message help information (the error
message descriptions are in the software, not in the manual).

3-2 PLDshell Plus/PLDasm User’s Guide

Simulation results can be viewed in table or wave form. (Wave form
display is supported on Hercules, EGA, and VGA monitors only.)

Program — Invoke Intel’s APT programming software. APT commands are sum-
marized in Appendix E, “Using APT.”

Run — Run up to 24 user-defined programs including other PLD development
tools. The menu is user-defined, with each menu option including default com-
mand line options and working directories.

Utilities — Provides several utility functions, including:
Disassembly of JEDEC files to PLDasm files.
Conversion of non-Intel PLD JEDEC files to Intel uWPLD JEDEC files.
Translation of ADF/SMF files created for iPLS II to PLDasm files.
Listing the current directory
Changing the current directory

Invoking a DOS shell. Note that PLDshell Plus creates a swap file when
creating a DOS shell. Do not delete this file or you will not be able to
return to PLDshell Plus.

Modifying Options for PLDshell Plus

Databook — Allows you to view datasheet briefs on Intel WPLDs and technical
notes on disassembly, conversion, etc. You may print the note being displayed by
pressing <F9>.

Quit — Exit to DOS.

PLDshell Plus/PLDasm User’s Guide 3-3

Edit Menu

Figure 3-2 shows the Edit menu. Use this menu to create or edit your PLDasm source
files.

")

- INTEL’s PLDshell Plus [Ux.y 1 SID [Ux.y 1
MF for Help
Edit pilesSin Ujew Pragranm Run Utilities Databock Quit

Edit or Create a Text File :

Editor @ REDIT

Filename : %.PDS

2

SING x s

o~

.

£

[}

a
[=1
iy
s
-
s
.
&
-
o

Figure 3-2. PLDshell Plus Edit Menu

&
e

Editor — Displays the currently defined text editor. A different editor can be
selected using the Change Editor button. You can also temporarily set the editor
by typing the editor program name in this field.

Filename — Displays the filename to be edited. The initial filename is *.PDS.
The default extension of .PDS can be changed to any convenient three-character
string. Pressing <Enter> when *PDS is displayed will display a list of all files
with the .PDS extension. If no files exist in the current directory, an error message
will be displayed. To enter a file with no extension, type the filename followed by
a period (but no extension). To invoke a text editor with no filename, press <F6>
to clear the field, then accept the menu. See the Utilities Menu to change the
current directory or the default filename extension.

Change Editor — Allows you to select the editor of your choice. This button
displays the Utilities—Modify Options submenu with the cursor positioned on
the Text Editor field. Type the command name of the desired editor in this field
and press <F10>.

3-4 PLDshell Plus/PLDasm User’s Guide

Compile Options Submenu

The Compile Options submenu, Figure 34, allows you to set the compiler options:

Complile Options: Documentation:
Expand Equations H - Error File
Mininize (Espresso): : Yes» Report File
futomatic Inversion: : Yes~

Fitter Options: E
. Use Pin Assigneents, Abort on na Fit

§ ST

S Samasassm £SC Cancels F18 Accepts SPACE Toggles “Lists

Figure 3-4. PLDshell Plus Compile Options Submenu

Expand Equations — Yes/No. Initial default is Yes. Expands equations to SOP
(Sum-of-Products) form to allow minimization, DeMorgan’s inversion, and fitting.
Equations must be in SOP form for this processing. The option of not expanding is

* provided for designs with equations already in SOP form which the designer does
not want altered in any way.

Minimize (Espresso) — Yes/No. Initial default is Yes. Minimizes SOP equations
to least number of p-terms. PLDshell Plus uses the Espresso minimization algo-
rithm, an algorithm that reduces equations to the least number of p-terms almost
all of the time.

Automatic Inversion — Yes/No. Initial default is Yes. When the default is used
(Yes), the parser will automatically invert equations using DeMorgan’s inversion
rules if the inverted form will use a smaller number of p-terms. The minimizer,
when selected, will also automatically invert equations during the minimization
process if the inverted form will use a smaller number of p-terms.

When the No option is selected, the parser will not invert SOP equations. The

minimizer, when selected, will compute the inverted and non-inverted form and, if
the inverted form is smaller, will ask the designer if it is okay to use the inverted

PLDshell Plus/PLDasm User’s Guide 3-7

Session Defaults

When no files or options are specified on the command line, APT uses session default
values whenever possible. When no default values are detected, the user is prompted for
the required information. Some session defaults are read from a Defaults Configuration
File (.CFG). Other session defaults must be set by the user after invocation.

[
8
=
[-N
"=
o
]
C @
Qa
[
E o
<

Session defaults are divided into two groups, JEDEC header defaults, and APT execu-
tion defaults. The Defaults Configuration File (.CFG file) contains all of the header
defaults and some of the execution defaults.

JEDEC header defaults provide header information for JEDEC files created by the read
command from pre-programmed devices. These defaults cannot be changed by using
the DEFAULTS command. They can only be changed by editing the APT.CFG file (a
user-defined .CFG file) with an ASCII text editor. Examples of these defaults are as
follows:

DESIGNER: Your Name
COMPANY: Your Company
DATE: Current Date
NUMBER: Final Eng. Part No.
REVISION: 1.0

0L N acanna
Cruuv. ovvcas

COMMENT: This is a comment to help document the design. It can span more than
one line.

Execution defaults, which are used when executing APT commands, are shown in the
following example:

JEDEC file currently in memory = <none>.jed
Device name = 85c224
Intel Part name = 85c224
Communication Port = PORT3
XOR Map File = <none>.xor
Save Log Messages = YES
Repeat Count = 1000

These defaults can be changed by command line options for several APT commands.
Two defaults (Communication Port and Save Log Messages) are stored in the .CFG file
and read on invocation. When exiting APT, the user is given the option to write these
defaults (if they have been changed) to the .CFG file for later use. These two defaults
can also be changed by editing the .CFG file using an ASCII text editor.

E-10 PLDshell Plus/PLDasm User’s Guide

Simulation Options Submenu

The Simulation Options submenu, Figure 3-5, allows you to set the simulation options:

(- 2

INTEL's PLDshell Plus [Ux.y 3 SID [Ux.y 1
Compile Source to JEDEC File/Simulate a Design F1> for Help
Edit CampilesSin VUiew Program Run Utilities Databook

“Slmulatlion Options

Shou Asynch. Events : No =

Max. Asynch. Events : 32

ESC Cancels F18 Accepts SPACE Toggles

Figure 3-5. PLDshell Plus Simulation Options Submenu

Show Asynch. Events — Yes/No. Initial default is No. When set to Yes, vectors
are generated for asynchronous events that occur during stabilization of each simu-
lation cycle. This allows designers to more easily identify race conditions/glitches
in combinatorial or fundamental mode sequential designs.

Max. Asynch. Events — Sets the maximum number of asynchronous events that
can occur during stabilization of each simulation cycle before aborting simulation.
This number can be any decimal integer in the range of 1 to 32,767. The initial
default is 32.

Save Simulate Options — Saves the selected simulation options, which will be-
come the new default start-up values until changed.

Chapter 5 describes these options in greater detail and explains how and when you
may use them.

PLDshell Plus/PLDasm User’s Guide 3-9

View Menu

Figure 3-6 shows the View Menu. With this menu you can view: Source Files,
Error/Log Files, Report Files, Vector/Waveform Files, or Any Other File. This menu
provides facilities for viewing, not editing. A designer can toggle between two open
files to aid in design debugging.

Use the T and { cursor keys to highlight a View option, then press <Enter> to select.

INTEL's PLDshell Plus [Ux.y 1 SID [Ux.y 1
Edit Conpile. n View Progran Run Utilities
Source Files.
ErrorsLog Files

Report Files
Vector/laveforn Files

Ay Other-l-'ile

&

£
@
S
f=1
g
a
=
Y
=
73
[=}
pur}
a

T

o
£

@
3

NS

7

Figure 3-6. PLDshell Plus View Menu

Source Files — Displays a list of source files to view. Use the T and { cursor
keys to highlight a file, then press <Enter> to select. The default file extension is
.PDS.

wear/l na Lilas Nienlave a 1

) 8 ot AF areccllan €ilas ¢ . TTen sh |
AR VR AVUER RN — Uloplﬂ]b a udL vl

i101/10g 1ucs W0 W. USE uic T and v
cursor keys to highlight a file, then press <Enter> to select. The file extensions are
ERR and LOG. When viewing an error file, you can move to a specific emor
waming message and press <F10> to display on-line information to help you cor-
rect the error/waming,

Report Files — Displays a list of report files generated by the compiler/simulator.
Use the T and 4 cursor keys to select a file, then press <Enter>. The file extension
is RPT.

3-10 PLDshell Plus/PLDasm User’s Guide

Vector/Waveform Files — Displays the View Simulation Vectors submenu (see
Figure 3-7 and the discussion in the next subsection).

Any Other File — Allows you to view any other file in the current directory. The
initial search pattern is for all files (*.*).

Note that source, error, report, state table vectors, or other files are displayed in
text format and are supported on all systems. The waveform viewer, however, can
only run on systems with VGA, EGA, or Hercules graphics cards/monitors.

Toggling between two open files (in text mode) is supported by the <TAB> key.
After opening the first file, you can press <TAB> to select a second file to be
viewed. Use the cursor keys to select the file and press <Enter>. The <TAB> key
will now toggle between the two files. To toggle between a waveform file and
other files, refer to the Viewer Notes.

View Simulation Vectors Submenu

Figure 3-7 show the View Simulation Vectors submenu. This menu selects the
form in which vectors will be displayed and printed.

:)

Uieu Sinulation Vectors

Using

HST Sin File : w.hst

[
s
[
=
©
=

3
[=1
pu |
[

Uieu Uectors as : Waveform (Graphics)«

Print Vectors as : Wavefornm (Extended ASCII)=

Print Page Length : 66 (8 for Mon-paged Output)

Print Waveforns

ESC Cancels F18 Accepts SPACE Toggles

Figure 3-7. PLDshell Plus View Simulation Vectors

HST Sim File — Displays the name of a simulation file to be viewed. The initial
display is *.HST if more than one file is available. Pressing <Enter>, <Fi0> or
using the Accept button will display a list of all simulation files.

PLDshell Plus/PLDasm User’s Guide 3-11

View Vectors as — Provides two viewing options: Waveform (Graphics,) or as a
State Table (1s and 0s). Use the SPACE key to toggle between the two options.
Figure 3-8 shows an example of the graphics viewing option.

Print Vectors as — Provides two print options: Waveform (Extended ASCII) or
Waveform (Plain ASCII). Waveforms can be printed using the line-drawing char-
acter set or with standard ASCII characters.

Print Page Length — Allows you to select the page length in terms of the num-
ber of lines. The default is 66 lines per page (6 lines per inch). Enter O for non-
paged output (continuous feed). Printer output is to the print device defined in the
Utilities - Modify Options submenu. The default is PRN.

Print Waveforms — Prints the waveforms using the format specified in the Print
Vectors As field and the Print Page Length field.

Save View Options — Saves the currently defined View Simulation Vectors op-
tions as the start-up options.

%] £
0

e 8 0 Fi> for nele
- -1
0w =
<
%52
- " 73

a S ——
_
Y o.
N D G | 4 K 0
r v T -
ACNTDL . HEY CEsc) to Exit

Figure 3-8. PLDshell Plus Sample Waveform Display

3-12 PLDshell Plus/PLDasm User’s Guide

Graphics Waveform Viewer

PLDshell Plus provides a powerful graphics waveform viewer which allows:
* Zooming of the viewing area

* Moving, copying, or deleting a signal

¢ Cursor movement through either mouse or keyboard commands

* Ability to set a reference cursor to check relative timing

* Ability to save an edited waveform as a .HST file

* Ability to toggle between a waveform display and a text file.

View Waveform Commands

The View Waveform screen responds to commands from both a mouse, if a driver is
installed, and a keyboard. With a two-button mouse (left and right buttons only), some
commands will need to be entered with the keyboard.

Mouse Functions

Move Mouse Up Moves cursor up one position
If at top, moves signals down
Move Mouse Down Move cursor up down position
If at bottom, moves signals up
Move Mouse Left Moves cursor left one position
If at side, moves signals right
Move Mouse Right Moves cursor right one position
If at side, moves signals left
Left Button If highlighted and held, drags signal
Left Button If not highlighted, zooms in
Middle Button If highlighted, copies signal
Middle Button If not highlighted, toggles reference marker
Right Button If highlighted, deletes signal
Right Button If not highlighted, zooms out

PLDshell Plus/PLDasm User’s Guide 3-13

Key Pad Functions

Up Arrow (T) Moves cursor up one position

If at top, moves signals down
Down Arrow () Moves cursor down one position

If at bottom, moves signals up
Left Arrow () Moves cursor left one position

If at side, moves signals right
Right Arrow (=) Moves cursor right one position

If at side, moves signals left
Ctrl Left Arrow Moves cursor left half screen

If at side, moves signals right
Ctrl Right Arrow Moves cursor right half screen

If at side, moves signals left
Shift Left Arrow Moves screen left one position
Shift Right Arrow Moves screen right one position
Home Moves cursor to left side of screen
End Moves cursor to right side of screen
Cutrl Home Moves cursor to beginning of file
Ctrl End Moves cursor to end of file
PgUp Drag signal up one position (If highlighted)

Moves cursor up ten positions (if not highlighted)
If at top, moves signals down

PgDn Drags signal down one position (if highlighted)
Moves cursor down ten positions (if not highlighted)
If at bottom, moves signals up

+ Zoom in

- Zoom out

* Toggle reference marker

r Reset program to starting conditions

? Display Help

INS Copy signal if highlighted

DEL Delete signal if highlighted

ESCor Ctrl C Exit program

TAB Toggles between waveform display and ASCII file
F1 Displays the On-Line Help file.

3-14 PLDshell Plus/PLDasm User’s Guide

Shift F9 Save Current File. Up to the first five characters of
the filename are used along with the suffix “-xx”
plus the extension .HST. The number “xx” is in the
range of 00 through 99. The name of the file being
saved is displayed on the screen for 3 seconds.

F10 Undo up to last five edits. If no edits have been made,
the system beeps.
Shift F10 Invokes the File Browser. The file browse feature

allows you to display up to eight consecutive text

files using the same base filename as the current wave-
form file but with different extensions. Pressing

<Shift F10> the first time invokes the first file. Pressing
<F10> after this sequences to the next file. Pressing
<Shift F10> after the first occurence will back up one
file. Use of the TAB key allows you to toggle between
the current waveform and the current text file.

Viewer Notes

e The current cursor position is displayed at the top left of the screen. The cursor
position corresponds to the vector number in the .HST file.

e The reference marker is toggled on/off by the middle mouse button or the asterisk
*).

* When a reference marker is enabled, the delta position (i.e., the cursor position minus
the reference marker position) is displayed next to the cursor position. Both of these
fields change to red when zoomed out past one bit of information per pixel.

* The help screen can be exited at any time by pressing the ESC key instead of paging
through the whole file.

¢ PgUp and PgDn allows you to move through the help file.
* To toggle between the waveform display and an ASCII text file (such as the source

file for the design), use the File Browse command (Shift F10) to open the source file.
Then use the <TAB> key to toggle back and forth.

PLDshell Plus/PLDasm User’s Guide 3-15

Program Menu

Figure 3-9 shows the Program Menu. This menu allows you to enter a programming
command line to program a UPLD device. The default programmer software is APT.
APT is provided and installed with PLDshell Plus/PLDasm. See Appendix E, “APT
Description.”

PLDshell Plus [Ux.y 1 SID [Ux.y 1

Program Device >

Please enter the command line to run the desired f.-':‘
device programming softuare :

C:\PLOSHELL\APT [

Change Programning S/U
s F

it S

= PLDshell/PLDasm -

Figure 3-9. PLDshell Plus Program Menu

The initial command line is “C:\PLDSHELL\APT” with blank spaces following,
allowing you to enter the appropriate commands. Three features can make your
task easier:

$F uses the basename from previous processing

$D specifies the current working directory

? at the beginning of the command line results in user interaction before
execution. This allows you to edit the command line if desired.

See “Run Menu Notes” for examples of how to use these features.

Change Programming S/W — Allows you to use a programming language other
than APT. Using this button displays the Utilities—Modify Options submenu.

3-16 PLDshell Plus/PLDasm User’s Guide

Run Menu

Figure 3-10 shows the Run Menu. This menu allows you to run up to 24 preset
application programs or batch files by pressing the appropriate lewer key, A
through X. There are two additional letters: Y and Z. Y allows you to run an
application that is not one of the other 24 available keys. Press Z to modify the
program menu. Figure 3-11 shows the Modify Run submenu.

INTEL's PLDshell Plus [Ux.y 1 SID [Ux.y 1

Run listed progranm.
Edit CompilesSim Uiew Progran

XTCCCHMNIJODVOITIX

Run Other
Modify Run fMenu.

Figure 3-10. PLDshell Plus Run Menu

Modify Run Submenu
This submenu consists of three fields for each of the 24 application programs:

PROGx Label — Consists of a string of up to 16 characters that describe the
application to be run.

Command — This is the command line to invoke the application program. The
command line supports the following features to customize command lines:

$F uses the basename from previous processing

$D specifies the current working directory

? at the beginning of the command line results in user interaction before
execution. This allows you to edit the command line if desired.

See “Run Menu Notes” for examples of how to use these features.

PLDshell Plus/PLDasm User’s Guide 3-17

INTEL's PLDshell Plus [Ux.y 1 SID [Ux.y 1

Hodify xtens on this menu (alters menu). 1> for Help|

Edit k. Quit

PROGA Label:
Conmand :
Rum Dir :

PROGB Label:
Cammand ¢
Run Dir :

PROGC Label:
Command @
Run Dir :

PROGD Label:
Command ¢
Run Dir :

ESC Cancels F18 Accepts

Figure 3-11. PLDshell Plus Modify Run Submenu

Run Dir — This is the DOS path for the application program.

Run Menu Notes

1. To configure a run menu item, select Run, then select Modify Run menu (Z).
Move to a blank location and fill in the label (your choice), command line, and
working directory fields. Press <F10> to accept the entry. You are prompted to
save the changes. Answer “Y” to save the changes. Answer “N” if the changes are
temporary.

2. The following is an example Run Menu entry for invoking a program that
annotates JEDEC files. This illustrates Run Menu entries.

PROGB Label: Annotate JEDEC
Command: ?AJED $F.JED device
Run Dir:

This entry invokes a program named AJED, which requires the following
command line:

AJED filename.JED device name

The label “Annotate JEDEC” will be displayed in the “B” position under the Run
Menu since it is entered in the PROGB field. The “SF” allows the current working

3-18 PLDshell Plus/PLDasm User’s Guide

base filename to be passed to the AJED program. A “.JED” extension is added by
Run. The word “device” is a place holder for the device part name, which must be
filled in to properly run AJED. The “?” causes Run to pause before executing the
command line; this provides the opportunity to fill in the device part name.

Since no working directory is specified, the current working directory is assumed.
A “$D” can be used in the command line if the working directory needs to be
passed in the command line.

You cannot invoke Terminate-and-Stay-Resident programs (TSRs) from the Run
menu. You will encounter “Spawn Error” messages. In some cases, the system
will hang, requiring a reboot. All TSRs should be loaded before invoking
PLDshell Plus.

PLDshell Plus/PLDasm User’s Guide 3-19

Utilities Menu

Figure 3-12 shows the Utilities Menu.

4)

INTEL’s PLDshell Plus [Ux.y 3 SID [Ux.y 1

Disassemble a JEDEC to PDS Source 1> for Help|

Edit Compile/Sin Vieuw Progran Run Utilities Databook Quit

Disassemble: -
Convert JEDEC:
Translate

List Directory
Set Directory

Figure 3-12. PLDshell Plus Utilities Menu

E
e U
@
=)
-
a.
=
3
o
oY
a
-l
o

Disassemble — Disassembles existing JEDEC files (see Figure 3-13).

Convert — Converts JEDEC files for common PALs/GALs into JEDEC files for
Intel uPLDs (see Figure 3-14).

Translate — Translates ADF/SMF source files to PDS source files (see Figure
3-15).

List Directory — Lists the contents of the currently defined directory.

Set Directory — Sets the directory that PLDshell Plus/PLDasm uses.

Invoke DOS Shell — Creates a DOS shell and displays the DOS prompt. Type
exit<Enter>

to return to PLDshell Plus.

3-20 PLDshell Plus/PLDasm User’s Guide

Modify Options — Allows you to change default values for:

Command File
Programming SW

Text Editor

Print Device

Menu Hotkeys on or off
Source Extension

See Figure 3-16.

PLDshell Plus/PLDasm User’s Guide 3-21

Disassemble Submenu

N INTEL’ s PLDshell Plus [Ux.y 1 SID [Ux.y 1
il Disassemble a JEDEC to PDS Source
Edit CompilesSin VUiew Program Run Utilities Databook Quit

Input Filenane : ». jed

Source Device : b Target Device - NN
ES .

Package Type !

Mput Filenanre:

£5C Cancels P1#W fAeeepts SPACE List

Figure 3-13. PLDshell Plus Disassemble Submenu

P,
.!,‘

H
o
=
3

o

3

Z}PLDshell/PLDasm «

Input Filename — Displays a list of JEDEC files to disassemble. Use the T and 4
cursor keys to select a file name then press <Enter>. The default file extension is
JED.

nre

Source Device — Sets the source device to be used. Pressing the <SPACE> key
displays the list. Use the T and I cursor keys to select a device type then press
<Enter>. The target Intel device will be displayed on the right of this field.

Package Type — Sets the package type. Pressing the <SPACE> key displays a
list of package types for the device selected under Source Device. Use the T and {
cursor keys to select the package type then press <Enter>.

Output Filename — Displays the output file name that will be created during
disassembly. The default is the target device name plus .PDS.

3-22 PLDshell Plus/PLDasm User’s Guide

Convert Submenu

4 INTEL's PLDshell Plus [Ux.y 1 SID [Ux.y 1

Convert PALC(R) JEDEC to EPLD JEDEC 1> for Help
Edit Compiles/Sim VUlew Program Run Utilities Databaock Quit

Convert JEDEC

Input Filename @ x. jed
Source Device i Target Device - NN
Package Type

Qutput Filenane:

ESC Cancels F18 Accepts SPACE Lists

Figure 3-14. PLDshell Plus Convert Submenu

Input Filename — Displays a list of JEDEC files to convert. Use the T and {
cursor keys to select a file name then press <Enter>. The default file extension is
JED.

Source Device — Sets the source device to be used. Pressing the <SPACE> key
displays the list. Use the T and 4 cursor keys to select a device type then press
<Enter>. The target Intel device will be displayed on the right of this field.

Package Type — Sets the package type. Pressing the <SPACE> key displays a
list of package types for the device selected under Source Device. Use the T and |
cursor keys to select the package type then press <Enter>.

Output Filename — Displays the output file name that will be created during

1 Th. H 3 1y DNC
conversion. The default is the target device name plus .PDS.

PLDshell Plus/PLDasm User’s Guide 3-23

Translate Submenu

hell Plus [Ux.y 1 SID [Ux.y 1 B

Progran Run Utilities

"
¥ Input Filename : #.adf

. Output Filename:
5

ESC Cancels F18 Accepts g

Figure 3-15. PLDshell Plus Translate Submenu

Input Filename — Displays a list of ADF files to be translated. Use the T and { cursor
keys to select a file then press <Enter>. You can change the file type to *.SMF for iPLS
II State Machine Files.

Output Filename — Displays the file name selected under Input Filename, but with a
.PDS extension. If there is a file name conflict, you can press <F6> to clear this field
and type in a different file name. Use an extension of .PDS.

3-24 PLDshell Plus/PLDasm User’s Guide

Modify Options Submenu

-)

INTEL's PLDshell Plus [Ux.4y] SID [Ux.y 1
Nodify Program Options
it

L Configure Pro

Connand Shell $ C:\COMMAND.COM -
Programming SYU. @ C:\PLDSHELL\APT ®
Text Editor : EDIT

Print Device : PRN

Menu Hotkeys 1 0n - -

Sourcg Extension : PDS

=3

ESC Cancels F18 Accepts SPACE Toggles

Figure 3-16. PLDshell Plus Modify Options Submenu

Command File — This is the name of the command file used by the operating system.
For DOS, the default is COMMAND.COM.

Programming S/W — Allows you to select the programming software to program PLD
devices. The default is APT. Can be set to whatever software runs or interfaces to your
programmer. Arguments may be included in the invocation line. See “Run Menu Notes"
for available arguments and how to use them.

Text Editor — Allows you to select the text editor used by the Edit Menu. The default
is the editor you selected during installation (EDIT if you used the installation default).
Can be set to your preferred editor. Arguments may be included in the invocation line.
See “Run Menu Notes" for available arguments and how to use them.

Print Devices — Allows you to set the printer device for use from the View Menu. The
default for DOS is PRN. A filename can be entered to print to a disk file.

Menu Hotkeys — Sets the menu hotkeys On or Off. Using the <SPACE> key toggles
between On and Off. The default is On. With hotkeys On, menu selections can be made
using the first letter of the menu item. When set to Off, you must use the cursor keys
and <Enter> to make a selection.

PLDshell Plus/PLDasm User’s Guide 3-25

Source Extension — Sets the extension for the PLDasm source file. The default is

“.PDS’’. This option allows you to use a unique user or project extension for your
designs.

Databook Menu

Figure 3-17 shows the Databook Menu. Use the T and | cursor keys to select a topic
then press <Enter>.

/

~

INTEL' s PLDshell Plus [Ux.y 1 SID [Ux.y]
Ujeu Datasheet Briefs and Other Information KF1> for Help|

Con e’Sin Vieuw Program Run Utllitles Databook Quit

Datasheet Briefs
Technical Notes
Order Codes
Compiler Support
Progranming Support

r e

2
3
=
T
&
3

Figure 3-17. PLDshell Plus Databook Menu

Datasheet Briefs — Displays on-line information similar to that in the Program-

mable Logic Databook including: Supported Devices, Other Devices, and Soft-
ware Products.

Technical Notes — Displays on-line technical information about

Device Conversion Table
Intel Part/Package Names
PDS Compilation/Conversion
JEDEC Disassembly

JEDEC Conversion
ADF/SMF Translation

3-26 PLDshell Plus/PLDasm User’s Guide

Simulation
Test Vectors
Installation/Configuration

Device Order Codes — A tabular listing of Intel uPLDs and their respective
order codes.

Compiler Support — A tabular listing of logic compilers/versions that support
Intel yPLDs. The names, addresses, and phone numbers of each vendor are pro-
vided so you can call for the most current information.

Programming Support — A tabular listing of PLD programmers/versions that
support Intel pPLDs. The names, addresses, and phone numbers of each vendor
are provided so you can call for the most current information.

PLDshell Plus/PLDasm User’s Guide 3-27

wwstdid/elisatds:

Sl ey

3-28 PLDshell Plus/PLDasm User’s Guide

Chapter 4 — PLDasm Files and Language

This chapter summarizes the structure of PLDasm files and describes the syntax for
implementing PLD designs.

PLDasm Files

PLDasm files are standard ASCII files containing printable ASCII characters only. The
minimum PLDasm file contains the Declaration section and at least one of the following
design sections: State Machine, Equation, or Truth Table section. PLDasm files may
contain more than one State Machine or Truth Table sections and may contain a simula-
tion section. Figure 4-1 shows a summary of the PLDasm file sections.

Comments

Comments can be included on any line. Comments begin with a semicolon (;). Every-
thing between the semicolon and the end of a line is considered a comment.

The following are three examples of valid comments.

;i PIN
3 INB ; THIS COMMENT FOLLOWS A PIN NAME

; THIS COMMENT IS ON A LINE BY ITSELF

Legal Signal Name Characters

Signal names can include 1-14 alphanumeric characters (A-Z, a—z, and 0-9) and under-
score (). PLDasm is not case-sensitive. The first character must be an alphabetic char-
acter. Any other printable ASCII character is illegal and will cause errors during
compilation if they appear in signal names.

o

o

<

3

o

c

<
-t

E

@

<
[=]
-t
a

Declaration Section

The first section in all PLDasm files is the Declaration section. This section contains
nine fields. The first six fields are optional and may appear in any order; these fields
provide a means to identify designs and track revesions. The seventh field is optional
and is used to specify the state of special bits (Turbo Bit or Security Bit) if the default
state of these bits is not desired. The eighth field is required; this field selects the target
device and names the pins. The last field is optional and provides a way to substitute
strings to simplify designs. Figure 4-2 shows an example Declaration section. The para-
graphs that follow describe the different fields. The first six fields are:

Title Field — Name of the design.

Pattern Field — Pattern number.

PLDshell Plus/PLDasm User’s Guide 4-1

4-2

DECLARATION SECTION (REQUIRED) — Must be first section.
Header Information (optional)

Chip and Pin Declarations (REQUIRED)

CHIP DESIGN_A 85C22V10
PIN 1 CLK

PIN 2 IN1

PIN 3 OUTA

String Substitutions (Optional)
STRING SELA ’(INA * INB * /INC)

DESIGN SECTIONS — At least one is required: State Machine, Equations, Truth
Table.

STATE MACHINE SECTION (Optional)

S1:= BUS_REQ > 82
S2:=BUS_CONT -> S3
+BUS_WAIT > S2

EQUATIONS SECTION (Optional)

OUTA = IN1 * IN2 * /IN3
OUTB := IN4 * IN5
+ IN6 * /INS

TRUTH TABLE SECTION (Optional)

T_TAB (inl in2 >> /outl out2)
: 0

——O O
—_O = O
-0 oo

1
0
0

SIMULATION SECTION (Optional) — Must be last section

SETF OE /CLK INI IN2
PRLDF /Q2 /Q1 /Q0
SETF INI
CLOCKF CLK

Figure 4-1. PLDasm File Section Summary

PLDshell Plus/PLDasm User’s Guide

Revision Field — Version number.

Author Field — Designer’s name.
Company Field — Name of your company.
Date Field — The date of the design.

Each field starts with its respective keyword and can contain a full line of text. These
fields are treated as comments; you can substitute different information in these fields if
desired. You may, however, use them as shown to retain compatibility with other PDS
language compilers.

Options Field — The seventh field allows you to specify the state of special bits
such as the Turbo Bit and Security Bit. These bits enable user-selectable device
features such as low-power operation or security protection. The Options field
starts with the required “OPTIONS” keyword. This is followed by the name and
state of the specific options (see the Turbo and Security Bit discussions for
examples). The “OPTIONS” keyword can only appear once, even when multiple
options are specified as follows:

OPTIONS
TURBO = ON
SECURITY = OFF

Turbo Bit — Most Intel pPLDs provide a Turbo Bit that allows you to optimize a
design for speed or for power savings. When the Turbo Bit is on (TURBO=0N)
the device is optimized for speed. When the Turbo Bit is off (TURBO=OFF) the
device is optimized for power savings and will enter standby mode in low
frequency applications if no transitions are detected for a period of time. Refer to
the component data sheet for additional information on the Turbo Bit.

The state of the Turbo Bit in PLDasm files is specified as follows:

OPTIONS TURBO = ON

[
o
o
3
=J

5
£
@
4

Q

)

a.

or

OPTIONS TURBO = OFF

The “TURBO”, and either "ON” or “OFF” keywords are required, as is the equal
sign ”=". White space may appear between any of the keywords and between the
equal sign and keyword(s). If the state of the Turbo Bit is not specified, PLDasm

automatically sets the Turbo Bit to On to optimize the design for speed.

Security Bit — Most Intel pPLDs provide a Security Bit (or Verify Protect Bit)
that, when programmed, prevents the contents of the device from being read. This
feature provides design security. The state of the Security Bit is specified like the
Turbo Bit. For example,

PLDshell Plus/PLDasm User’s Guide 4-3

TITLE DRAM CONTROLLER A FOR 386 WORKSTATION
PATTERN 386_DRAM_A
REVISION 3 —_—
AUTHOR YOUR NAME DECLARATIONS
COMPANY YOUR COMPANY
DATE 10/15/90
OPTIONS TURBO = ON OPTIONS
SECURITY = OFF DECLARATION
CHIP DRAMA 85C224 <+<———— CHIP DECLARATION
;PINS 1 THROUGH 12 ~
PIN 1 CLK2
PIN 2 PCLK
PIN 3 ADS
PIN 4 MIO
PIN 5 PA2
PIN 6 IREADY
PIN 7 RASOP
PIN 8 SEL1
PIN 9 RAS1P
PIN 10 REFIN
PIN 11 RESET
PIN 12 GND ; ground
> PIN
;PINS 13 THROUGH 24 DECLARATIONS
PIN 13 NC ; no connect
PIN 14 SEL2
PIN 15 DRAMSTART
PIN 16 REFADROE
PIN 17 RASO REGFBK
PIN 18 RAS1 REGFBK
PIN 19 MUXOE
PIN 20 ROWSEL
PIN 21 PIPECYC
PIN 22 BUSCYC
PIN 23 NC ; no connect
PIN 24 vce ; power /
;STRING SUBSTITUTIONS THROUGHOUT FILE STRING
«— SUBSTITUTIONS
STRING QADS ' (ADS * PCLK * /RESET) '
STRING RASON ' ((RASO + RAS1l) * /IREADY) '

Figure 4-2. Example Declaration Section

4-4 PLDshell Plus/PLDasm User’s Guide

OPTIONS SECURITY = ON
or
OPTIONS SECURITY = OFF

The “SECURITY”, equal sign “=”, and either “ON” or “OFF’ keywords are
required. If the state of the Security Bit is not specified, PLDasm automatically
sets the Security Bit to OFF to allow design information to be read.

Chip Field — contains the design name, the name of the target PLD, and the
names of the pins on the target device. The Chip Field begins with the keyword
“CHIP”. The remaining fields are defined as follows:

Design Name — The design name is required for PALASM compatibility, but is
not used by PLDasm.

Device Name — The device name is required for device-specific designs and
must be one of the supported PLDs. For device-independent design, the reserved
word “INTEL_ARCH” can be used. Chapter 5 describes the differences between
device-specific and device-independent design. Table 7-1 (Chapter 7, “Device
Descriptions™) lists the devices, packages, and device names. For non-Intel PLDs
(PALs/GALs) , Table 7-1 also lists the Intel uPLD into which the design is fit.

Pin Names — Names the input and ouipui signais. The names can include i-14
alphanumeric characters; the first character must be an alphabetic character. Pin
names can be separated by spaces (see the figure), commas, or carriage returns.
The first example shows the easiest method of defining pins. The order of the pins
is not important with this method.

PIN 1 ADDRO
PIN 2 ADDR1
PIN 4 ADDR3
PIN 5 ADDR4
PIN 3 ADDR2

When using this method of pin declarations, a keyword can be added after the
signal name to define the architecture of 1/O pins on devices that offer additional
/O options. This is described later in the “Using Additional Features” section.

A second method for defining pin names is shown below. If this method is used
and a particular pin is not used in the design (no connect), it must be designated
“NC”. Pin names must appear in sequential order (first name for pin 1, second
name for pin 2, etc.) with this method.

ADDRO, ADDR1, ADDR2, NC
ADDR3

NC

ADDR4, OUT2, NC, OUTS

PLDshell Plus/PLDasm User’s Guide 4-5

Q
o
«©
3
o
c
«
-
£
0
<
Q
e
a

PLDshell Plus is capable of automatically assigning inputs and outputs to pins in
many cases. Refer to the “Automatic Pin Assignments” section later in this
chapter.

String Field — Allows global string substitutions in PLDasm files. Each String
substitution begins with the keyword “STRING” followed by the name of the
string and the substitution value. In Figure 4-2, string substitutions are used to
group some signals that are frequently used together. This can help simplify the
Equations section. It is recommended that all text in substitution strings be
enclosed in parentheses to improve readability in output files. This will ensure
correct results when used with other Boolean operators.

Basic Circuit Design Using Boolean Equations

This section describes basic combinatorial and registered circuit design for Intel pPLDs
using Boolean equations. Advanced registered design topics, such as asynchronous
clocking of registers, use of T-type, JK-type, and SR-type flip-flops, Automatic Pin As-
signments, Alternate I/O Options, Truth Tables, and State Machines are covered in later
sections.

A complete list of PLDasm operators (combinatorial and registered) is as follows:

Operator Description
/ Active-Low in pin declaration; Boolean NOT elsewhere in file
* Boolean AND
+ Boolean OR
+ Boolean XOR
= Combinatorial Output
= Latched Output
= Registered Output

Combinatorial Circuits

Combinatorial circuits are easily implemented in PLDasm files using Boolean equations.
These equations must be placed in the Equations section of PLDasm files. An Equations
section begins with the keyword “EQUATIONS"”. The output from the equation is a pin
name or node name elsewhere in the design. Figure 4-3 shows some simple logic func-
tions implemented using Boolean equations.

The first seven equations each implement basic logic gates. The eighth equation (SUM1)

is a slightly more complex logic function with three AND terms (product terms, or
p-terms) feeding one OR gate. The last equation (SUM2) shows how the output from

4-6 PLDshell Plus/PLDasm User’s Guide

EQUATIONS

AND1 = IN1 * IN2 ; LOGICAL AND
/NAND1 = IN1 * IN2 ; LOGICAL NAND
OR1 = IN1 + IN2 ; LOGICAL OR
/NOR1 = IN1 + IN2 ; LOGICAL NOR
A = /IN ; LOGICAL NOT
XOR1 = IN1 :+: IN2 ; EXCLUSIVE OR
XOR2 = IN1 * IN2 :+: INA * INB + INC

; EXCLUSIVE OR - PRECEDENCE IS
((IN1 * IN2) :+: (INA * INB)) + INC

SUM1 IN1 * IN2 * IN3
/IN1 * (/IN2 * IN4)

IN1 * INS5 * IN6 ; SUM OF PRODUCTS

+ + 0

SUM2 IN1 * IN2 * /SUM1
IN1 * /IN2 * /SUM1

/IN1 * INS * /SUM1 ; SUM OF PRODUCTS

+ 4+ 0

Figure 4-3. Combinatorial Circuits Using Boolean
Equations

one equation can be fed back and used to qualify other equations. In this example, the
SUM1 output is fed back through the logic array to help qualify SUM2.

Note that parentheses can be used to specify precedence in Boolean equations. SUM1
shows an example of this. Equations can be expressed in Sum-of-Products form, but this
is not a requirement. PLDasm can convert equations into Sum-of-Products form auto-
matically, unless the Expand Equations option in the Compile submenu is turned off
(Expand Equations = No).

Active-High/Active-Low Qutputs

As described in the device section of this guide, macrocells on most Intel devices con-
tain an inversion control bit that allows the respective output to be configured as active
high or active low. An output is configured as active low when either the pin name or
equation feeding the pin inciudes the slash prefix /. An output is configured as active
high when the polarities of both the pin name and equation match, i.e., both do not have
the slash prefix ’/’. In the examples in Figure 4-4, OUTA and OUTB are both active-
low outputs. OUTC is active high. (OUTD is also active high—when slashes are used in
the pin name and equation feeding the pin, they cancel each other out).

PLDshell Plus/PLDasm User’s Guide 4-7

[
o
I
3
o
&]
<
-~ 3
E
7]
o d
[=]
g
a.:

;PIN 10 11 12 13

ouTA /OUTB OUTC /0UTD
EQUATIONS
/OUTA = A * B *C * /D ; active low output

OUTB = A *B *C* /D active low output

OUTC = A * B * C * /D ; active high output
/OUTD = A *B *C * /D ; active high output
; polarities cancel each
; other

Figure 4-4. Active-High and Active-Low Output
Equations

NOTES

Some logic compilers automatically treat outputs/equations as active
low for devices with fixed, active-low outputs (e.g., a 16L8), even
when the equation or signal name does not include the slash ‘/* prefix.
Since Intel uPLDs contain programmable outputs, the presence of the
slash ‘/° prefix is always required to designate an equation/output as
active low. The absence of the prefix always means active high.

The automatic inversion option allows the parser and minimizer to re-
duce the number of p-terms by using DeMorgan’s inversion rules. The
parser and minimizer (when selected) can choose the proper combina-
tion of true/complement inputs and invert/non-invert to help designs fit
into a device. This can be done automatically (Automatic Inversion =
Yes) or at the designer’s discretion (Automatic Inversion = No).

An alternate method for specifying an output as active high or active low is to use the
“HIGH” or “LOW” keyword in the pin declaration. This option is shown below:

PIN 11 OUTB LOW
PIN 10 OUTA HIGH

Note that this option is not supported with the older order-specific method of pin decla-
ration

Output Enable

Output enables for each macrocell on the supported devices are controlled by one or
more p-terms that do not include an invert option. Equations that evaluate to a logic 1
(high) enable the output on Intel pPLDs; equations that evaluate to a logic 0 (low)
disable the output (three state). (Some PLD manufacturers use a low to enable and a

4-8 PLDshell Plus/PLDasm User’s Guide

;PIN 10 11
OUTA OUTB

EQUATIONS
OUTA = B * C * /D
/OUTB = /A * B *C *D
OUTA.TRST = E * /G ; output enable for OUTA

OUTB.TRST = E * G * /D ; output enable for OUTB

Figure 4-5. Outputs with Output Enable Equations

high to disable outputs.) If equations are not specified for output enables, PLDasm ties
the outputs high (always enabled). Output enable equations are identified by the output
signal name with a “.TRST” extension. Figure 4-5 shows two examples of output enable
equations.

Registered Circuits

Registered circuits are easily implemented using the same Boolean equation syntax as
combinatorial circuits, but with a “:=" operator in place of the “=". This syntax im-
plements a standard D-type register circuit.

When using the dedicated clock pin on a pPLD with a single clock, it is not necessary
to specify the clock input. PLDasm will use the dedicated clock by default. You may,
however, choose to specify the clock as part of your design methodology. The clock for
the circuit uses the output name with a “.CLKF” extension on the left-hand side of the
“=" symbol and the clock input name on the right-hand side. Figure 4-6 shows several
examples of registered circuits.

The first register, QOUTA, is clocked by the dedicated clock pin (since no clock is
specified) and is always enabled (OE tied to VCC).

The second register, QOUTB, is also clocked by CLK. Its output buffer, however, is
controlled by the OE input signal. The clock is specified here.

The third register illustrates the use of register feedback in designs. This circuit uses
feedback from the first two registers as its input. It is clocked by CLK (not specified)
and its output buffer is controlled by a p-term.

On devices that have more than one clock pin (e.g., the 85C060 has two clock pins),

you should specify the clocks to avoid conflicts. The fourth example shows this (OUT3
and OUT13).

PLDshell Plus/PLDasm User’s Guide 4-9

o
o
«
3
o
5
£
(%]
g
[=]
3
Q.

Some devices such as the 85C22V10 contain a programmable synchronous clock inver-
sion option to allow registers to be clocked on either the rising or falling edge of the
global clock signal. The fifth example shows outputs clocked by the non-inverted and
inverted clock (OUT4 and OUTS).

The following is a list of all the signal extensions and their descriptions:

Extension
ACLK
.CLKF

.ALE
LE
.TRST
.RSTF
SETF
.D

P S

nw

Description

Asynchronous Clock

Clock Pin (Synch.) or Clock Equation (Asynch.)
Asynchronous Latch Enable

Synchronous Latch Enable

Output Enable Equation

Clear Equation

Preset Equation

Data Input to D-Type Register

Data Input to Toggle Register

J Data Input to JK Register

K Data Input to JK Register

R Data Input to SR Register

S Data Input to SR Register

Feedback Path from I/O Pin (sometimes needed during simulation)

4-10 PLDshell Plus/PLDasm User’s Guide

; OUTPUT, CLOCK, AND OE PINS
CLK OE CLK2 QOUTA /QOUTB QOUTC 0UT4 OUTS
EQUATIONS
; D-register with default clock and OE always enabled
QOUTA := IN1 * IN3

+ IN1 * /RESET
QOUTA.TRST = VCC

; D-register with clock specified and OE controlled
; by an input pin (OE)

QOUTB := INA * /IN1
QOUTB.CLKF = CLK
QOUTB.TRST = OE

; D-register with default clock, output controlled by
; p-term, equation includes feedback from other

registers
/QOUTC := QOUTA * /QOUTB
QOUTC.TRST = IN1 * OE

; Two D-registers, each controlled by different clocks.
; Supported on devices with multiple clocks or that
; support asynchronous clocking.

/QOUT3 := INA * INB
QOUT3.CLKF = CLK

QOUT13 := INA * /INB * IND
QOUT13 .CLKF = CLK2

; Two D-registers, one clocked by CLK
; and the other by CLK inverted.

OUT4 := IN1 * IN4 * INA
OURT4.CLKF = CLK

OouUTS := IN2 * INB
OUTS.CLKF = /CLK

Figure 4-6. Registered Circuits Using Boolean
Equations

PLDshell Plus/PLDasm User’s Guide

4-11

@
o
Q
3
=
o
<
-
=3
o
1]
=
)
Q..

Using Additional Features

This section covers design of circuits that make usc of the additional features provided
by some Intel pPLDs. Topics include asynchronous clocking of registers, use of the
Preset and/or Clear p-term, and use of T-type, JK-type, and SR-type registers. Also
described is the syntax for using global resources and for taking advantage of some of
the more complex I/O architectures of Intel pPLDs. The features described here are not
available on all devices.

Asynchronous Clocking

Asynchronous clocking is available on many Intel pPLDs. Asynchronous clocking of
registers is implemented by assigning the register clock to an equation or pin other than
a dedicated clock input. This allows logic functions to be used as register clocks. For
example, each register in the iPLD610 and 85C060 contains an OE/Asynchronous Clock
p-term, which allows each of the 16 registers can be clocked independently.

The first example in Figure 4-7 shows a simple equation being used to clock QUTD.
Note that the clock signal uses the output name with an “.ACLK” extension. A single
p-term equation is then specified as the clock signal. The output buffer is tied to VCC
(always enabled). Use of the register name with an “.ACLK” extension is the recom-
mended method for specifying asynchronous clocks.

An alternate method for specifying asynchronous clocks is to use a “.CLKF” extension.
Note, however, that the PLDasm compiler will assign a clock signal using this extension
to a dedicated synchronous clock pin if the clock signal is: (1) driven by a single active-
high input signal, and (2) the input signal is unassigned or inadvertently assigned to a
pin that can function as a dedicated clock. For sake of consistency, the “.ACLK” exten-
sion is recommended.

ngyagg.:

RN RN

Preset P-Term

ha

A
dae

Asynchronous Presets are available on each macrocell in the SAC312 and 5AC324 to
allow registers to be independenty preset (to 1) when the specified equation is true
(high). The Preset equation is implemented by using the output name with a “.SETF”’
extension on the left-hand side of the “=" sign and an equation on the right-hand side.
The third example in Figure 4-7 shows an example of a single p-term preset equation.

Clear P-Term

An asynchronous Clear p-term is available on many devices to allow registers to be
independently reset (to 0) when the specified equation is true (high). The second and
fourth examples in Figure 4-7 make use of this feature. Both examples use a single
p-term equation to clear a register. The Clear function is implemented in an equation by
using the output name with a “RSTF” extension on the left-hand side of the “=" sign
and an equation on the right-hand side.

4-12 PLDshell Plus/PLDasm User’s Guide

;OUTPUT , CLOCK, AND OE PINS

CLK1 OE CLK2 QOUTD /QOUTT QOUTK QOUTR SET

EQUATIONS
; D-register with asynch. clock, OE always enabled

QOUTD := INA * INB
+ INA * INC * /IND * /RESET
+ /QOUTD * INC * INE
QOUTD.ACLK = IN1 * IN2 * /IN4
QOUTD.TRST = VCC

Asynchronous clock could also be implemented as follows:

QOUTD.CLKF = IN1 * IN2 * /IN4

T-register with synch. clock, asynch. reset, OE control

QOUTT.T := INA * /INC
QOUTT.CLKF = CLK1

QOUTT.RSTF = IN1 * IN2 * RESET
QOUTT.TRST = OE * /RESET

; JK-register with synch. clock, OE control, preset

QOUTJ.J := QOUTD * /INA
QOUTJ.K = INB * INC * /QOUTD
QOUTJ .CLKF = CLK1

QOUTJ.TRST = IN1 * OE

QOUTJ.SETF = SET

; SR-register with synch. clock, asynch. reset, OE always

; enabled

QOUTR.R := QOUTA * IN1 * IN2 * /QOUTB o
QOUTR. S = /QOUTA * INA * INB o
+ /QOUTB * IN1 * IN2 S

+ RESET * /IND 2
QOUTR.CLKF = CLK1 3
QOUTR.RSTF = IN1 * IND £
QOUTR.TRST = VCC a
a

-t

Q.

Figure 4-7. Extended Register Options

Toggle Flip-Flops

A T-type, or toggle, flip-flop is available on many devices and is implemented as shown
in the second example in Figure 4-7. QOUTT is the output pin name. A “.T” extension
is added to the output name to designate the register input. QOUTT is clocked by a
synchronous clock (dedicated clock pin) and includes an output enable p-term and a
reset p-term.

PLDshell Plus/PLDasm User’s Guide 4-13

JK Flip-Flops

QOUTI is the output pin name for a JK-type flip-flop. The “J” input is identified by
using the output name with a “J” extension. In the same way, the “K” input uses the
output pin name with a “.K” extension. Note that this is a clocked emulation of an RS
flip-flop, not a true asynchronous circuit. (See the notes after “SR Flip-Flops™.) OUTJ
also includes an output enable p-term.

SR Flip-Flops

QOUTR is the output pin name for an SR-type flip-flop. The “S” input is identified by
using the output pin name with a “.S” extension. In the same way, the “R” input uses
the output pin name with a “.R” extension. Note that this is a clocked emulation of an
RS flip-flop, not a true asynchronous circuit. QOUTR also includes a clear p-term and
the output buffer is tied to VCC (always enabled).

NOTES

Intel pPLDs emulate JK and SR flip-flips as synchronous registers.
The registers do not change state until the clock signal changes.

When JK and SR flip-flops are selected, the product terms are shared
among two OR gates (one OR gate for the J or R input, and one OR
gate for the K or S input). The allocation of these product terms may
be described as follows:

JorR =n
K or S = (available terms - n)

Using Global Set/Reset Signals

Some devices contain global signals, such as a register set and a register reset. The
iPLD22V10, 85C22V10, and 5C031, for example, both contain a synchronous set p-
term and an asynchronous reset p-term. The set and reset signals can be driven by the
true or complement of any input or I/O pin, or by any logic equation that can be im-
plemented in a single AND expression. Figure 4-8 shows an example of these global
signals, along with the PLDasm syntax to make use of them.

Note that a virtual pin (pin 25 on the iPLD22V10 and 85C22V10 and pin 21 on the
5C031) is used to identify the global signal, “GLOBAL” in this case. This name is then
used in the equations section, along with the “.SETF” and “.RSTF” extension to specify
the logic for the set and reset signals, respectively. In the example, the synchronous set
is connected to the SET input (pin 2). All registers in the device will be set (preset) to a
logic one when SET and ENABLE are high and the registers are clocked. The synchro-
nous reset is connected to the complement of the RESET signal (pin 3). All registers in
the device will be reset (cleared) to zero when RESET goes low and ENABLE goes

4-14 PLDshell Plus/PLDasm User’s Guide

high. Note that the programmable inverter in the iPLD22V10, 85C22V10, and 5C031 is
located at the output of the register. When using register set and reset to set the register
ouput, the inverter in these devices (when used) will invert the output of the register
from the internal high or low state.

TO ALL REGISTERS
IN THE DEVICE

R
g

D_

CHIP SAMPLE 85C22V10

. H

PIN 2 SET ; active high set

PIN 3 RESET ; active low reset
PIN 4 ENABLE ;virtual pin

PIN 25 GLOBAL ;forgiobal equations

GLOBAL.SETF = SET * ENABLE
GLOBAL.RSTF = /RESET * ENABLE
F100529

Figure 4-8. Global Set/Reset Usage

Implementing Alternate I/O Options

The default I/O configurations for Intel uPLDs are shown in Figure 4-9. For combinato-
rial outputs, the default feedback option is “pin feedback”. This means that the feedback
connection to the logic array comes from the IIO pin (after the output buffer). For regis-
tered ouiputs, the default feedback option is “registered feedback”. This means that the
feedback connection to the logic array comes from the register output (before the output
buffer). These defaults do not need to be specified in the PLDasm file (although you

may desire to do so as part of your design methodology).

PLDshell Plus/PLDasm User’s Guide 4-15

[
o
[}
=
o
c
©
-
£
0
fad
(=1
p
o

OE
COMBINATORIAL ;i COMBINATORIAL
INPUT —{ OUTPUT
PIN
FEEDBACK
OE
REGISTER
iNeUT . (P a &DRSS%R
cLK >
REGISTER
FEEDBACK F1004s8

Figure 4-9. Default Feedbacks for Basic Qutput Types

Some Intel uPLDs provide I/O configuration options in addition to those just described.
For example:

* Many devices allow registers to use pin feedback instead of register feedback.
* The 85C22V10 allows combinatorial output with registered feedback.

¢ The 5AC312, SAC324, and 5C180 global macrocells provide dual feedback paths to
allow macrocells to feed back their signals to the logic array while the /O pin is still
available for use.

To specify an alternate I/O configuration, use the appropriate keyword(s) in the pin
declaration for I/O signals to be configured (see Figure 4-10). The keywords are not
order-dependent, but you may wish to adhere to an order as part of your design method-
ology. If a keyword and the equation operator for an output conflict, the keyword takes
precedence.

-
-
N
- 13
K-
ko &
g
Lo
L8

A complete list of all /O keywords is shown on the facing page. The keywords desig-
nated by an asterisk are not available on supported devices.

4-16 PLDshell Plus/PLDasm User’s Guide

VO Keyword Description

COMBINATORIAL or COMB Combinatorial Output
REGISTERED or REG Registered Output
LATCHED Latched Output
PINFBK Pin Feedback
CMBFBK Combinatorial Feedback
REGFBK Registered Feedback
*LATFBK Latched Feedback
BURIED Internal Feedback
HIGH Active-High Output
LOW Active-Low Output
INPUT Input Pin

OUTPUT Output Pin

e} /O Pin

*Not available on supported devices

Default specifications - No keyword. Will be combina-
torial or registered as determined by equation operator.

PIN S CouTl
PIN 6 ROUT1

Combinatorial Output, Pin Feedback. Same as combinatorial

default, but this time it is specified using keywords.
PIN S COuUT1 COMBINATORIAL PINFBK

Registered Output, Registered Feedback. Same as

registered default, but this time it is specified

using keywords.

PIN 6 ROUT1 REGISTERED REGFBK

Registered Output, Pin Feedback.

PIN 7 ROUT2 REGISTERED PINFBK

Combinatorial Output, Registered Feedback.

PIN 15 CORF3 COMB REGFBK

Figure 4-10. Examples of /O Options Using PLDasm
Syntax

PLDshell Plus/PLDasm User’s Guide

4-17

o
S
Q
3
o
c
«Q

-
13
@
©

[=1

=

a

The following pages show how to take advantage of these architectural features in PLD-
asm syntax. Note that the “INPUT”, “OUTPUT”, and “I/O” keywords are supported for
compatibility with PALASM-2 source files only. The PLDasm compiler accepts these
keywords but does not process files differently than when they are omitted.

Automatic Pin Assignments

Automatic pin assignment can be implemented by omitting the pin numbers in the dec-
laration section of the source file. Since the device and package are known to PLDasm,
the PLDasm fitter uses its internal algorithms to fit designs to the target devices. This
helps designers concentrate on implementing the desired functions by reducing the need
to know device pinout.

While the fitter does not require that pin numbers be assigned, it does require that
enough information be present in the design to remove ambiguities. The recommended
approach is to specify all control signals for all equations in the design, including dedi-
cated clock pins. For example, the output equation below contains equations for the OE,
Set, Reset, and Synchronous Clock control signals in addition to the normal SOP equa-
tion.

REG1l := IN1 * IN2 * /IN3 * /IN4 * ENA
+ IN1 * /IN2 * REG2 * ENA
+ /IN1 * /REG3 * /IN4

REG1.TRST

OE

REG1.CLKF = CLK20MHZ
REG1.RSTF = /RESET
REG1.SETF = SET

If all outputs in a design have the control signals specified as shown above, the PLDasm
fitter can provide the pin assignments. In these cases, the Pin Declarations can be writ-
ten without pin numbers, as follows:

PIN CLK20MHZ
PIN OE
PIN RESET
PIN SET
PIN ENA
PIN IN1
PIN IN2
PIN IN3
PIN IN4
PIN REG1
PIN REG2
PIN REG3

When this guideline is followed, PLDasm source files can be compiled to any device
that supports the requested feature set. The PLDasm fitter will supply the appropriate
pin numbers for the input and I/O signals.

An altemative to specifying dedicated clock signals, is to assign the pins for the output
signals. The PLDasm fitter can then assign the outputs to the appropriate clock signal,

4-18 PLDshell Plus/PLDasm User’s Guide

even on devices that support multiple clock pins. The following example repeats the pin
assignments and equations from the previous example, showing this alternate form.

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

REG1

REG1.
REG1.
REG1.

CLK20MHZ

OE

RESET

SET
ENA
IN1
IN2
IN3
ING

16 REG1
17 REG2
18 REG3

:= IN1

* IN2 * /IN3 * /IN4 * ENA

+ IN1 * /IN2 * REG2 * ENA

+ /IN1

TRST =
RSTF =
SETF =

* /REG3 * /IN4

OE
/RESET
SET

Note that because Intel pPLDs do not contain dedicated OE, Set, or Reset pins, all other
control signals must still be specified.

Bidirectional I/O

Bidirectional I/O can be implemented on all Intel uPLDs that support pin feedback. The
output enable to these pins determine whether the pin is an output or an input (see
Figure 4-11 for an example). When the XMT_RCV p-term is active (high), the
macrocell drives both the output pin and the input feedback signal. When XMT_RCV is
low, any external device can drive the input feedback signal; the I/O pin acts as an
input. Note that it is not necessary to list the bidirectional input signal in the input pin
declaration to use this feature.

PLDshell Plus/PLDasm User’s Guide 4-19

guage

c
@
)
£
@
@
Q
'y
a.

XMT_RCV
,Joz
inp1 —E9P) | D Q | {OaA
REGISTERED
CLK > OUTPUT
PIN
FEEDBACK
QA
PDS EXAMPLE:
PIN 13 QA PINFBK
EQUATIONS
QA := IN1
QA.CLK = CLK
QA.TRST = XMT_RCV F100825

Figure 4-11. Bidirectional /O Example

Dual Feedback/Buried Macrocells

Some MUPLDs, such as the SAC312/5AC324, and the global macrocells on the 5C180,
contain dual-feedback paths. Dual feedback allows the associated I/O pin of a macrocell
to be used for input (pin feedback). As shown in Figure 4-12, a second (internal) feed-
back can be taken from the output of a register. The OE for the macrocell is disabled,
allowing the I/O pin to function as an input and the now-buried register output to be
used as well. Note that pin 15 is listed twice in the pin declarations, once for an input
and once for an output.

Dual Feedback with Bidirectional I/O

Dual feedback with bidirectional I/O can be used with devices such as the SAC312 and
5AC324 and the global macrocells of the 5C180. This is similar to the simple dual-feed-
back example shown in Figure 4-12. In Figure 4-13, instead of the OE p-term being
disabled, it is used to allow the /O pin to function as both input and output. This
capability allows the register output to be used internally regardless of the state of the
output buffer. The signal on the I/O pin will depend on whether the pin is transmitting
or receiving data.

4-20 PLDshell Plus/PLDasm User’s Guide

OE
IN1 [Q {OINs

K >

QA
(NTERNAL
FEEDBACK)

INS (PIN FEEDBACK)

vee

D Q ‘—&—Daa
PDS EXAMPLE:

CHIP DUAL_1 SAC312

PIN 15 QA
PIN 15 IN3

EQUATIONS

QA.D:=IN1

QA.TRST = GND

QA.CLKF = CLK

QB.D:=QA*IN3

QB.TRST = VCC

QB.CLKF = CLK Fio0s27

Figure 4-12. Dual Feedback

P-Term Allocation

Some Intel uPLDs, such as the SAC312 and SAC324, allow p-terms from one macrocell
to be allocated to other macrocells. This can give you from zero to 16 p-terms for your
equations. Figure 4-14 shows an example where Macrocell 3 is using 16 p-terms,
Macrocell 4 is using 4 p-terms, Macrocell 5 is using 12 p-terms. P-terms are allocated in
blocks of four, so not all p-terms in a block may be used.

P-term allocation is performed automatically by. the fitter. Designers take advantage of
this feature by simply creating equations that meet their design requirements. The mini-
mizer will reduce the number of p-terms and the fitter will generate the correct JEDEC
image to allocate the needed p-terms.

PLDshell Plus/PLDasm User’s Guide 4-21

)
o
<
3
o
c
T 3
-~
£ 4
]
o]
[=]
4
Q.

DT_R

ox —>

QA
INS
PDS EXAMPLE:

PIN 13 QA
PIN 13 IN3

EQUATIONS

QA.D :=INY
QA.CLKF = CLK
QA TRST=DT_R

QBD = QAN regreter value
QCD «IN3°INT*OT_A , pnvaive

+IN3* /TR Frooszs

Figure 4-14. Dual Feedback with Bidirectional /O

~
p-terms 14
Macrocell 1 f— — — — —
p-terms 5-8
e pterms 14
T Macrocett2 — — — — —
R g o p-terms 5-8 |
L)) 4
g p-terms 14 r— 16 p-terme
. —E‘) Macrocats f— —— — — —f Allocated to
N pterms 58 >— | Macrocett 3
g
8. RING1 < .
| o O p-torms 14 |
n'“ Macrocelt 4 f— — — — — 4 pterms
4 p-terms 5-8 pyti——— Allocated to
A 4
plerma 14 |4
Macrocells [— — — — — 12 ptorms
prterms 58 —“— [~ Allocated to
5
ptoma 14 L4
Macrocelt§ [— — — — —
p-terms 5-8
~
F100522

Figure 4-13. P-Term Allocation on a 5SAC312

4-22 PLDshell Plus/PLDasm User’s Guide

Using Disconnected Macrocells

In devices with p-term allocation, such as the SAC312/5AC324, inputs to a macrocell
are disconnected from the logic array when both p-term groups are allocated to adjacent
macrocells. If all the inputs to a macrocell are disconnected, the macrocell input can be
tied to VCC or GND (see Figure 4-15).

Also, the control signals, Output Enable, Preset, Clear, and Synchronous or Asynchro-
nous Clock, are still available which allows the macrocell to be used to implement a
variety of useful functions, such as:

* Toggles using T-register and D-register equations

* Asynchronous RS registers driven by preset and clear p-terms

e Other registered functions that use the control signals

The ability to use disconnected registers can also be combined with feedback and dual-
feedback support to make the most efficient use of device resources.

OUTPUT

B =
ASYNCH,
MACROCELL
REGISTER
vo PIN
VCC OR GND AP
(P-TERMS ALLOCATEDA —orr Q —3
YO ADJACENT MACROCELLS)

————.PD ABYNCH. CLK .
B>

INTERNAL FEEDBACK

PIN FEEDBACK

F100047

Figure 4-15. Using Disconnected Macrocells

PLDshell Plus/PLDasm User’s Guide 4-23

o
o
«Q 3
3
o3
e)
[+
,
£ 1
u
<
[=
=
[

Using Programmable Inputs

The 5AC312 and 5AC324 have programmable inputs that can be individually config-
ured in one of five modes:

1. Flow-through input

2. Input register (D-register), synchronous operation

3. Input register (D-register), asynchronous operation

4. Input latch (transparent D-latch), synchronous operation
5. Input latch (transparent D-latch), asynchronous operation

Figure 4-16 shows an example of a flow-through, a synchronous latch , and an asyn-
chronous register with PLDasm syntax examples. IN1 is a standard flow-through input.
LIN2 is a latched input as specified by the “LATCHED” keyword in the pin assignment.
The latch enable for this input is specified as ILE (synchronous input latch/clock) in the
equations section by using the signal name with a “.LE” extension. RIN3 1s a registered
input as specified by the “REGISTERED” keyword in the pin assignment. This input
register is asynchronously clocked by the invert of IN1. The RIN3 clock is specified as

LATCH
uN2 D———p a

vce

e D—— ¢ ouTA

_ REGISTER_
RING D—— D Q

PIN 1 ILE ; Input fatch enable
PIN 4 N1

PIN 5 LIN2 LATCHED ; latch input pin

PIN 6 RIN3 REGISTERED ; register input pin
PIN 15 OUTA ; combinatorial output

EQUATIONS

LIN2.LE = ILE
RIN3.ACLK =/IN1
OUTA = LIN2 * /RIN3

F100632

Figure 4-16. Programmable Input Examples

4-24 PLDshell Plus/PLDasm User’s Guide

an asynchronous clock by using the “.ACLK” extension. OUTA is shown as a simple
example to allow a simulation section to be written to test these examples.

When clocking latches/registers asynchronously (i.e., using a p-term), the clock can be
generated by the true or complement of any pin, or by any p-term that can be expressed
in a single AND form.

When using the synchronous ILE/ICLK clock pin, input latches open (become transpar-
ent) on the logic high and latch data on the falling edge of the signal. Input registers
clock on the falling edge of the clock signal. (Note that this is different from macrocell
registers, which clock on the rising edge of the clock signal.)

The ability to latch/clock data into the device inputs can help implement fast pipelining
circuits.

Altering Set-Up and Hold Times

On some WPLDs, such as the iPLD610, 85C060, iPLD910, and 85C090, there is a way
to alter the tsu (setup) and tco (clock-to-output) parameters to better match system
timing. By using the asynchronous clocking feature provided with these devices, the tsu
and tco values are shifted with respect to the signal or signals clocking the registers. For
example, using the asynchronous clock on the iPLD610 shortens tsy and lengthens tco.
The following table shows the timing differences for specific speed versions of the
85C060 and 85C090 mPLDs. Please refer to the device data sheets for additional parts
and speed versions.

Device Synchronous Clocking | Asynchronous Clocking
tsu (NS) teo (NS) tsu (ns) tco (NS)
iPLD610-10 7.0 6.5 2.0 12
85C060-10 7.0 6.5 2.0 12
iPLD910-15 1 9.0 4.0 18
85C090-15 11 9.0 4.0 18

The following are PLDasm examples of synchronous and asynchronous clocking for the
iPLD610, 85C060, iPLD910, and 85C090:
Synchronous Clocking

PIN 1 CLK ; synch. 610/910 clock
PIN 10 OuT_s

EQUATIONS

OUT_S.CLKF = CLK

PLDshell Plus/PLDasm User’s Guide 4-25

® -
o
©
3
o
c
Q
-
£ 3
5
o
=
ur
a

Asynchronous Clocking

PIN 2 ASYNCLK ; any input or I/0 pin
PIN 10 OUT_S

EQUATIONS

OUT_S.ACLK = ASYNCLK

An alternate method of tailoring tsu and tsy to system timing is provided on the
85C22V10 in the form of a clock inversion option. Use of this feature allows selected
registers to clock on the falling edge of a synchronous clock signal, effectively moving
the tsu and tsy windows with respect to the rest of the system timing. Refer to the
discussion of “Registered Circuits” earlier in this chapter for an example.

[}
o
]
3
=
<
4

asm

% PLD,

-

Priimepumeathere: seans:

4-26 PLDshell Plus/PLDasm User’s Guide

Truth Table Design

Truth tables provide an effective way of describing a design or parts of a design. For
example, truth tables are often used for decoders. PLDasm supports more than one op-
tional Truth Table section in PLDasm files.

As shown in Figure 4-17, each Truth Table section begins with the “T_TAB” keyword.
Truth tables are position dependent, i.e., each input has a corresponding column for each
row of the table. The first line of the table lists the input and output signal names for the
Truth table inside parentheses. Subsequent rows list the values of each output for each
combination of inputs.

; Combinatorial truth table

T_TAB (inl in2 >> outl out2 /out3)
0 0 : 0 0 0
0 1 0 0 1
1 ‘0 1 0 0
1 1 1 1 0

; Registered truth table

T_TAB (UPDOWN /CLR q0 ql :>> q0.T ql.D)
1 0 0 1 : 0
1 0 1 0 0 0
0 0 0 1 1 1
0 0 1 1 1 0
X 0 0 X 1 1

Figure 4-17. Truth Table Examples

Inputs are listed first. These are followed by a separator. Outputs are then listed. Entries
can be separated by blank spaces or commas. The separator in the signal name line also
identifies truth table outputs as combinatorial (>>), registered (:>>), or latched (*>>).
The sample file ADDRI.PDS in your installation directory shows a truth table with
latched outputs.

o
o
<
3 4
o
2
<
-
E.
w
1]
o
ur |
a

All outputs in the same truth table must be the same type (i.e., you cannot mix combina-
torial and registered outputs in the same truth table). The first table in Figure 4-17 is
combinatorial, the second is registered. The separator for all other lines in the table is a
colon (3).

PLDshell Plus/PLDasm User’s Guide 4-27

Legal values for truth table entries are:

0 = False
1 =True
X =Don’t Care

Don’t Cares may be used to describe input or output values. A Don’t Care for an output
is treated as a logic 0.

Inputs or outputs can be specified as true or complemented. For example, “out2" is true
and "/out3" is complemented. Thus “/out3" goes high for cases where the truth table
entry specifies a 0; it goes low where the truth table entry specifies a 1.

For truth tables using registered outputs, the register type can be selected by adding the
appropriate extension to the output signal name In the second truth table, q0.T specifies
a T-type register and q1.D specified a D-type register. This feature can be useful when it
is known that a particular type will end up using fewer p-terms, but only when using
devices that support T-type registers. :

Truth table outputs can only drive output pins directly. They can be used as inputs to
Boolean equations, state machines, or other truth tables indirectly, i.e., via feedback
paths to the logic array. All truth table outputs must be specified in the pin list.

Truth table inputs can come from input or /O pins. This means that Boolean equations,
state machines, or other truth tables can provide input to truth tables via feedback paths
to the logic array.

A Truth Table section ends with the next PLDasm keyword.

State Machine Design

State machines provide an effective way of describing sequential (registered) logic. A
designer typically draws a state diagram that represents the different states and transi-
tions for a design. This diagram can then be expressed in PLDasm’s state machine
syntax. PLDasm supports more than one optional State Machine section in PLDasm
files.

T kangyage.

i
:
e

0%

o
R0

Each state machine begins with the “STATE” keyword followed by a machine type
(“MEALY_MACHINE or MOORE_MACHINE"). Outputs on Moore machines depend
on the current state only. Outputs on Mealy machines depend on both the current state
and next state information. This is followed by subsections that identify the global de-
faults, state transitions, output values, and transition conditions. Synchronous state ma-
chines transition on the rising edge of a dedicated clock pin. Asynchronous state
machines transition when the specified condition used as the clock is true.

4-28 PLDshell Plus/PLDasm User’s Guide

NOTE
PLDasm supports asynchronous state machines, but does not perform

hazard checking. You should check the resulting equations for hazard
conditions to ensure that your design will function properly.

Simple Moore State Machine Example

Figure 4-18 is an example State Machine section that implements a 2-bit up/down
counter (2BIT.PDS in your installation directory). The counter is a Moore machine de-
fined to have four states (S1 through S4), with state S1 as the default state. The state
assignments subsection defines the output values for each state. As can be seen, the

CHIP 2_bit_count 85C220

; pins

PIN 1 CLK
PIN 2 UPDOWN
PIN 3 CLEAR
PIN 12 01

PIN 13 Q0

; Simple 2-Bit State Machine
STATE

MOORE_MACHINE
DEFAULT_BRANCH S1

; state assignments

S1 = /Q1 * /Q0
S2 = /Q1 ¢+ Q0
S3 = Q1 * /Q0
s4 = Q1 * Q0 &
S
; state transitions 2
<
S1 := upP -> S2 =
+ DOWN -> sS4 @
o
§2 := UP -> s3 a.
+ DOWN -> S1
S3 := UP -> S4
+ DOWN -> 82
S4 := UP -> Sl
+ DOWN -> 83

; input conditions transitions
CONDITIONS

UP = UPDOWN * /CLEAR
DOWN = /UPDOWN * /CLEAR

Figure 4-18. 2-Bit Counter State Machine

PLDshell Plus/PLDasm User’s Guide 4-29

outputs follow a binary sequence. The state transitions subsection defines the order of
transitions from one state to another based on transition conditions.

The conditions subsection is denoted by the “CONDITIONS” keyword. In the figure,
UP and DOWN are mutually exclusive, with both qualified by CLEAR. This means that
when CLEAR is asserted (high), the default branch to S1 is taken, which clears the
counter to 00. When CLEAR is not asserted (low) the state machine counts up when
UPDOWN is high and counts down when UPDOWN is low. (Input conditions can only
be combinatorial equations. They can be specified in the Conditions subsection or in the
transitions section. When specified in the transitions section, they should be enclosed in
parenthesis, as follows:

S7 := BUS_CONT -> S8 ; S4 if ready
+ (/RDY * RESET * B2) -> S10 ; stay if not ready

State Machine Format (Moore Machine)

This section of the guide describes state machine format for PLDasm files in greater
detail. In Figure 4-19, the “STATE” keyword and the machine type keyword are fol-
lowed by five subsections: (1) Machine Defaults, (2) State Assignments, (3) State Tran-
sitions, (4) Transition Outputs, and (5) Transition Conditions. (A Mealy State Machine
appears later in this section.)

Machine Defaults

The Machine Defaults subsection can include three defaults: Output Hold, Default Out-
put, and Default Branch. Each State Machine section can use one, two, or all three
defaults. When using more than one default, they must appear in the order shown.

The “OUTPUT_HOLD” keyword, followed by a list of output pins, specifies that those
outputs are to hold their previous state if it is not possible to determine which state to
transition to. Use of this option prevents outputs from changing states when all possible
state transitions are not specified. Figure 4-19 uses this default.

The “DEFAULT_OUTPUT” keyword, followed by a list of output pin names, defines
the default levels for those outputs if it is not possible to resolve a transition. Use of this
option prevents outputs from going to unknown states when all possible state transitions
are not specified. Should an unspecified state occur, the outputs will be driven to the
defined levels. Valid logic levels are low (/ prefix), high (no prefix), or don’t care (%
prefix).

The “DEFAULT_BRANCH” keyword, followed by the name of a state or additional
keyword, defines the default state to which the machine will transition if it is not possi-
ble to decode input conditions. Use of this option eliminates the need to specify all
possible combinations of input conditions. Should an unmspecified input combination
occur, the machine will behave as specified. Three behaviors are possible:

4-30 PLDshell Plus/PLDasm User’s Guide

Transition to the default state. This is specified by including the name of the de-
fault state after the keyword, as follows:

DEFAULT_BRANCH s1

Hold the current state. This is specified by including the keyword
“HOLD_STATE?” after the “DEFAULT_BRANCH” keyword, as follows:

DEFAULT_BRANCH HOLD_STATE

Title Local Bus Controller Example
Pattern pds

Revision 1

Author Your Name

Company Your Company

Date Date

CHIP BUS_CON1 85C224

; inputs

PIN 1 CLK

PIN 2 M_IO
PIN 3 INT_CYC
PIN 4 A20

PIN 5 READY

; outputs

PIN 15 LOCAL

PIN 16 MEMORY

PIN 17 INTACK

PIN 18 Q3

PIN 19 Q2

PIN 20 o1

PIN 21 Q0

; simple bus controller

; inputs are M_IO, INT_CYC, A20, and READY
; outputs are LOCAL, MEMORY, and INTACK
STATE

MOORE_MACHINE

; define defaults

[
oy
a
3
o
c
«
-
£
@
«
Q
)
a.

OUTPUT_HOLD LOCAL MEMORY INTACK

DEFAULT_BRANCH SO
; state assignments

S0 = /Q3 * /Q2 * /Q1 * /QO
S1 = /Q3 * /Q2 * /Q1 * QO
s2 = /Q3 * /Q2 * Q1 * /Q0
s3 = /Q3 * /Q2 * Q1 * Q0
s4 = /Q3 * Q2 * /Q1 * /Q0
sS = /Q3 * Q2 * /Q1l * QO
S6 = /Q3 * Q2 * Q1 * /Q0
s7 =/Q3 * Q2 * Q1 * QO
s8 = Q3 * /Q2 * /Q1 * /Q0

Figure 4-19. Example State Machine Section

PLDshell Plus/PLDasm User’s Guide 4-31

; state transitions

S0 := MEM_REQ -> S1 ; S1 on local memory request
+ INT_REQ -> 83 ; S3 on interrupt request
; no-op (S0) if no request

; memory cycles

s1 := vcC -> S2 ; one fixed wait cycle
S2 := BUS_CONT -> 87 ; S7 if ready
+ BUS_WAIT -> S2 ; stay if not ready

; interrupt cycles

S3 := BUS_CONT -> S4 ; S4 if ready
+ BUS_WAIT -> S2 ; stay if not ready
S« = VvcC -> 85 ; Jump to SS - fixed wait
st = VcC -> S6 ; jump to S6 - fixed wait
S6 := BUS_CONT -> §7 ; Jump to S7 if interrupt done
BUS_WAIT -> S6 ; stay if not done

; cleanup and idle cycles

s7 = VCC -> S8 ; cleanup, then jump to S8
s8 := VvCC -> S0 ; Jjump to S0, ready to start

; transition outputs
SO0.OUTF := LOCAL * /MEMORY * /INTACK

S1.0UTF : /LOCAL * MEMORY * /INTACK

S2.0UTF := /LOCAL * MEMORY * /INTACK
S3.0UTF := /LOCAL * /MEMORY * INTACK
S4.0UTF := /LOCAL * /MEMORY * /INTACK
S5.0UTF := /LOCAL * /MEMORY * /INTACK
S6.0UTF := /LOCAL * /MEMORY * INTACK
S7.0UTF : /LOCAL * /MEMORY * /INTACK
S8.0UTF := LOCAL * /MEMORY * /INTACK
CONDITIONS
MEM_REQ

= M_IO * /INT_CYC * /A20
INT_REQ = /

M_IO * INT_CYC * /A20
BUS_CONT = /READY
BUS_WAIT = READY

Figure 4-19. Example State Machine Section (Continued)

4-32 PLDshell Plus/PLDasm User’s Guide

3. Transition to the next state. This is specified by including the “NEXT_STATE”
keyword after the “DEFAULT_BRANCH” keyword. The next state is defined by
the order of the state assignment equations. This option is implemented as follows:

DEFAULT_BRANCH NEXT_STATE

State Assignments

The State Assignments subsection defines each of the states in the machine, the state
variables, and the values of those variables. States are defined by a state name, i.e.,
“S1", ”S2", etc., on the left-hand side of an equal sign “=". State variables and the
values of those variables are listed on the right-band side of the equal sign. Each state
must have a unique set of values for the state variables. When defining values for state
variables, the choices are true (no prefix) or false (/ prefix).

State variables can have from 1-14 alphanumeric characters or underscore; the first char-
acter must be an alphabetic character.

Three possible methods for state assignment may be used. These methods are described
below.

Binary State Assignment

Binary is the simplest state assignment method. Each state in the list of state assign-
ments is encoded with the binary representation. The state machine shown below shows
an example of binary state assignment. This is also the method used in Figure 4-19.

STATE
MOORE_MACHINE
DEFAULT_BRANCH S1

; state assignments

S1 = /Q1 * /Q0
§2 = /01 * QO
$3 = Q1 * /Q0
s4 = Q1 * Q0

Gray Code State Assignment
A Gray code is defined as two consecutive states that differ in state assignment values

by exactly one bit. The example below shows assignment of Gray codes for an 8-state
machine.

PLDshell Plus/PLDasm User’s Guide 4-33

[
=)
«©
3
o .
[=
«Q
—
£
13
Q
a 7
=
a

STATE
MOORE_MACHINE
DEFAULT_BRANCH S0

;state assignments

S0 = /Q2 * /Q1 * /Q0 ; state 0, powerup
Sl = /Q2 * /Q1 * QO

S2 = /Q2 * Q1 * QO

S3 = /Q2 * Q1 * /Q0

S4 = Q2 * Q1 * /Q0

SS = Q2 * Q1 * Q0

S6 = Q2 * /Q1 * QO

S7T = Q2 * /Q1 * /Q0 ; state 7

One Hot State Assignment

With a One Hot code, there are generally as many output bits as there are states in the
machine. Each bit is 0 except for the state that the machine is in. This is primarily useful
for very small machines, or for those where the state values are driving other logic. An
example of One Hot assignment is shown below:

STATE
MEALY_MACHINE
DEFAULT_BRANCH S0

;state assignments

INITIAL = /Q3 * /Q2 * /Q1 * /QO0 ; state 0, powerup
S1 = /Q3 * /Q2 * /1 * QO
§2 = /Q3 * /Q2 * Q1 * /Q0
S3 = /Q3 * Q2 * /Q1 * /QO
S4 = Q3 * /Q2 * /Q1 * /Q0
State Transitions

The State Transitions subsection specifies the transitions between states. The subsection
begins with the name of a state. State transitions that are not explicitly defined in this
section will transition to the DEFAULT_BRANCH state, if any.

Each entry in this subsection contains the name of the current state, the Boolean register
operator (:=) or combinatorial operation (=), a condition label, the transition designator
(->), and the name of the target state. For example, the first entry in the State Transi-
tions subsection in Figure 4-19 is as follows:

S0 := MEM_REQ -> S1 ; S1 on local memory request
+ INT_REQ -> s3 ; S3 on interrupt request
; no-op (S0) if no request

This entry means, “When you are at state SO and MEM_REQ is true, transition to state
S1 on the next clock edge; if INT_REQ is true, transition to state S3 on the next clock
edge.” Since SO was previously defined as the Default Branch state, if MEM_REQ or
INT_REQ are not true, the machine would remain in state SO.

4-34 PLDshell Plus/PLDasm User’s Guide

The second entry is as follows:
S1 := vCC -> 82 ; on fixed wait cycle

Since no condition is specified, this is an unconditional transition. The machine will be
in state S1 for one clock cycle before transitioning to state S2. If the Default Branch had
been defined as “NEXT_STATE”, it would not have been necessary to specify each
unconditional transition; they would be assumed.

The third entry is as follows:
S2 := BUS_CONT -> 54 ; S4 if ready
+ BUS_WAIT -> 82 ; stay if not ready

This entry means, “When you are at state S2 and BUS_CONT is true, transition to state
S4. If BUS_WAIT is true and BUS_CONT is not true remain in state S2". SO is still the
default state if neither BUS_CONT or BUS_WAIT is true; this case, however, will
never occur because BUS_WAIT is defined in the Conditions section to be the comple-
ment of BUS_CONT. Conditions for a given state transition must be mutually exclusive,
but do not have to be the complement of each other.

For asynchronous state machines, use the combinatorial operator (=) for state transitions,
as follows:

S8 = WAIT_DONE -> S9 ; jump on wait_done high

NOTE

PLDasm supports asynchronous state machines, but does not perform
hazard checking. You should check the resulting equations for hazard
conditions to ensure that your design will function properly.

Transition Outputs

The Transition Outputs subsection specifies the state of output signals during transitions
for state machines where outputs are not the state registers themselves. In this case, the
output signals are LOCAL, MEMORY, and INTACK while the state registers are QO
through Q3.

Note that LOCAL, MEMORY, and INTACK have previously been defined in the OUT-
PUT_HOLD specification. This means that they will hold their previous state if it is not
possibie to resoive a transition to the next state.

The SO0.OUTF entry in Figure 4-19 means, “If you are transitioning from SO, LOCAL is
driven high and MEMORY and INTACK are driven low.”

The entry for S1.OUTF in Figure 4-19 means, “If you are transitioning from SI,
LOCAL and INTACK are driven low and MEMORY is driven high.

PLDshell Plus/PLDasm User’s Guide 4-35

o i
o
<
3
o
c
<
-
€
o
it
[=]
P
a

Another way to specify default output transitions is as follows:

P1.OUTF := CONDITION_1 -> /SIGNALA * SIGNALB
+ CONDITION_2 -> SIGNALA * /SIGNALB
+=> /SIGNALA * /SIGNALB

where the “+->” says “transition the outputs as follows if the above conditions are not
met.” This defines default output transitions for a particular state based on conditions.
There may be only one such definition for each state. Note that the fact that conditions
are added to the output transitions that defines these outputs as Mealy outputs (refer to
the next example). When no conditions are present, the outputs are Moore outputs.

Transition Conditions

The Transition Conditions section begins with the “CONDITIONS” keyword and speci-
fies the combination of input signals that determine the transition conditions.

For example, BUSREQ is a transition condition that is true when (1) M_IO is high and
INTCYC and A20 are low or when (2) M_IO and A20 are low and INTCYC is high.

Transition conditions entries are combinatorial Boolean equations. Register/latch equa-
tions cannot be used to specify transition conditions.

Mealy State Machine Example

Figure 4-20 is a state diagram for a Mealy Machine status checker. This machine transi-
tions between three states. The outputs of the machine, however, may set be to different
values for a given state, depending on input conditions. A Moore Machine implementa-

SACK, START
MEAL3..1)

F100631

Figure 4-20. State Diagram for Mealy Status Checker

4-36 PLDshell Plus/PLDasm User’s Guide

tion of this design would require nine states to accomplish the same task (one state for
each possible combination of outputs). Figure 4-21 is a PLDasm listing of the design.

Title Shows Mealy Machine
Pattern pds

Revision

Author Intel Applications
Company Intel

Date August 1991

CHIP exmealyl 85C224
; Design is a system state tracker.

PIN CLOCK ; clock for state variables
PIN SACK ; input conditions

PIN START

PIN MEAL3 ; Mealy-machine outputs
PIN MEAL2

PIN MEAL1

PIN MSTATE1 ; Mealy state variables
PIN MSTATEO

STRING M1_OUT ‘/MEAL3 * /MEAL2 * MEALl’
STRING M2_OUT '/MEAL3 * MEAL2 * /MEALL’
STRING M5_OUT ' MEAL3 * /MEAL2 * MEALL'
STATE MEALY_MACHINE

DEFAULT_OUTPUT /MEAL3 /MEAL2 /MEAL1
DEFAULT_BRANCH HOLD_STATE

; state assignments

STATEO = /MSTATE1l * /MSTATEO - ; powerup state
STATE1 = /MSTATEl1 * MSTATEO

]
o
4
3
o
c
c

-
=
(4]
4

(=]

e

o

STATE2 MSTATEl1 * /MSTATEO

; state transitions, which state to go to next

STATEO := TRIGO -> STATE2
+ TRIG1 -> STATE1l
+ TRIG2 -> STATE2

STATEl1 := TRIGO -> STATE2
+ TRIG1 -> STATEOQ
+ TRIG2 -> STATEOQ

STATE2 := TRIGO -> STATEOQ
+ TRIG1 -> STATE1l
+ TRIG2 -> STATEl

Figure 4-21. Mealy State Machine Example

PLDshell Plus/PLDasm User’s Guide 4-37

; output transitions, what the output variables should be

STATEO.OUTF = TRIGO -> M1_ouT
+ TRIG1 -> M2_ouT
+ TRIG2 -> MS_ouT
STATE1.OUTF = TRIGO -> M2_ouT
+ TRIG1 -> M1_ouT
+ TRIG2 -> M2_ouT
STATE2 .OUTF = TRIGO -> M5_ouT
+ TRIG1 -> MS_OuT
+ TRIG2 -> M1_ouT

; conditions that determine transitions

CONDITIONS
TRIGO = /SACK * /START
TRIG1 = /SACK * START

TRIG2 SACK * /START
EQUATIONS
MSTATEO .CLKF = CLOCK ; hook clock up, for device

; lndependence
MSTATE1.CLKF = CLOCK

Figure 4-21. Mealy State Machine Example (Continued)

Simulation

This section shows how to write a simulation section to functionally simulate your
sign. Functional simulation of designs is optional, but is recommended to make sure t
your design works the way you intend it. PLDasm provides the following simulat
capabilities:

¢ Event-driven simulation of combinatorial, registered, and state machine designs

o
%
-1
5

* Ability to set any input, preload any register, and compare any output against
expected value.

¢ Ability to group signals together (form a vector) to simulate a bus
* FOR-TO and WHILE loops
¢ IF-THEN-ELSE control

* Generation of test vectors from simulation results for inclusion in the JEDEC file.

4-38 PLDshell Plus/PLDasm User’s Guide

¢ Simulation history file with ability to output a subset of signals to a secondary trace
file.

Simulation is specified in the Simulation section of PLDasm files. The start of the Simu-
lation section is indicated by the keyword “SIMULATION”. PLDasm automatically exe-
cutes the simulation section when it is present and simulation is enabled from the
PLDshell Plus Compile/Sim submenu.

Simulation Syntax

Figure 4-22 is a sample Simulation section of a PLDasm file. It shows most of the
simulation syntax and is used as the example in the following discussion. Syntax is
discussed under two headings: (1) basic commands and (2) flow control.

Basic Commands

SETF — Sets the designated inputs, states, or vectors to the specified value. This
is the command that allows you to change input or feedback values. Simple
simulation of combinatorial designs can be accomplished using SETF commands
alone.

CLOCKF — Clocks registers high-then-low, or low-then-high. A clock initialized
to a low (e.g., SETF /CLK), goes high-then-low. A clock initialized to a high (e.g.,
SETF CLK), goes low-then-high. Simple simulation of registered circuits can be
accomplished using CLOCKF and SETF commands alone.

PRLDF — Preloads the designated registers with the specified high or low values.
This is a quick way to set state machines and other registered designs to known
states. Clock and control signals (OE, Clear, Preset, etc.) should be set to a known
state before executing the preload command; if this is not followed, preloaded
registers will immediately change to an unknown state. Figure 4-22 shows how to
use this command. See “Test Vector Notes” for guidelines on using this command.

VECTOR — Assigns a group of signals to a variable name. Makes it easy to
group bus signals or like signals together. This is a superset feature of PLDasm
syntax. Precedence of output is [msb . . . Isb]. Since vector assignments are
declarations, they must come first in the simulation section. Figure 4-22 shows
how to use this command.

TRACE_ON and TRACE_OFF — By default, all inputs and outputs to a device
are included in the simulation history file ((HST). If you wish to observe a subset
of these signals in a secondary trace file (TRF), use the
TRACE_ON/TRACE_OFF sequence. This command sequence opens and closes a
simulation trace file (.-TRF) to store the specified signals. These commands can be
placed anywhere in the Simulation section, but only one pair is allowed.
TRACE_ON can be used with a signal and/or vector list to specify which are to
be recorded in the trace file. In Figure 4-22, inputs IN1 and IN2, CLK, and

PLDshell Plus/PLDasm User’s Guide 4-39

[
o
«©
3
o
[=4
«
-
E
12
«
(=
ur
a

SIMULATION

; send some signals to trace file, define vector
; preload registers and set inputs to known state
VECTOR NUM := [Q3, Q2, Q1, Q0]

TRACE_ON CLK IN1 IN2 Q0 Q1 Q2 Q3

SETF OE /CLK /IN1 [/IN2

PRLDF /Q3 /Q2 /Q1 /QO ; clock and controls set
; before preload command

; count 9 times, disable OE between 3 and S

H

FOR j := 1 TO 9 DO

BEGIN
IF (j = 3) THEN
BEGIN
SETF /OE
END
IF (j = 5) THEN
BEGIN
SETF OE
END
CLOCKF CLK
END

; check other combinations of inputs

SETF IN1 1IN2
CLOCKF CLK
SETF /IN1 IN2
CLOCKF CLK
SETF IN1 /IN2
CLOCKF CLK

; close trace file
TRACE_OFF

; end simulation

:
&

S

PLDasm Language

Figure 4-22. Sample Simulation Section

b S

outputs QO through Q3 are to be recorded in the trace file. The OE input is
included.

2

CHECK — Checks the designated signals for the specified logic state a
displays an error if the actual state and expected state are not the same. Figi
4-23 shows how to use this command.

Flow Control

BEGIN/END — Delimits a sequence of simulation commands; used withir
conditional statement. Figure 4-23 shows examples of this syntax.

4-40 PLDshell Plus/PLDasm User’s Guide

i

H

FOR/TO/THEN loop including CHECK command

loop 8 times, check for high on Q2 after 4th clock

WHILE loop example
loop until OUTA and OUTB are both low

WHILE

IF/THEN/ELSE example

loop 16 times, check for READY = low on S5th and 6th
clocks; check for READY = high all other times

FOR cntr := 0 TO 15 DO

:= 1 TO 8 DO
BEGIN
CLOCKF CLK
IF (k = 4) THEN
BEGIN
CHECK Q2
END

(OUTA + OUTB) DO
BEGIN
CLOCKF ACLK1
END

BEGIN
IF cntr (>=4 * <=5) THEN
BEGIN
CHECK /READY
END
ELSE ©
BEGIN o
CHECK READY 5
END 2
CLOCKF CLK S
END €
(723
Q
Q
p
Q.

Figure 4-23. Additional Simulation Syntax Examples

FOR/TO/DO <loop> — FOR statement defines conditions under which the DO
loop is executed. Figure 4-23 shows an example of this syntax.

WHILE/DO <loop> — WHILE statement defines conditions under which the DO
loop is executed. Figure 4-23 shows an example of this syntax.

PLDshell Plus/PLDasm User’s Guide 441

of
%
a
a$

SR,

IF/THEN/ELSE — Provides IF/THEN/ELSE syntax for executing sequences
simulation commands. Conditions must be enclosed in parentheses. Figure 4-
shows an example of this syntax.

ASSIGNMENTS — Vectors may be assigned any numeric constant or a
Boolean expression in conjunction with a SETF command. Constants may
expressed in any of the following number systems: hexadecimal, octal, a
decimal. Examples of how to specify different number systems are as follows:

hexadecimal leading Ox 0xD51B
or #h hDS1B
or #H #HD51B
octal leading 0 0377
or #o #0377
or #0 #0377
binary leading #b #b1011
or #B #B1011
decimal no leading sequence 76
For example,
SETF VECTOR := Oxff ; hexadecimal assignment
SETF VECTOR := a * b ; decimal assignment

An example of how to use this feature is shown below:

;set all address of decode

VECTOR ADDR := [a8, a7, a6, aS, a4, a3, a2, al]
FOR COUNT := 0 TO 256 DO
BEGIN
SETF ADDR := COUNT
END

EXPRESSIONS — WHILE/DO and IF/THEN/ELSE allow any combination
Boolean expression or conditional for the condition. For example,

IF ((A * B) :+: (C + D) THEN

CONDITIONALS — The following conditional operations are supported:

= Equals

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
/= Does not equal

4-42 PLDshell Plus/PLDasm User’s Guide

Chapter 5 — Compiling and Simulating

This section describes design methodology, including device-independent and device-
specific designs, and shows how to use the compilation and simulation features of
PLDshell Plus/PLDasm.

Design Methodology

There are two basic approaches to PLD design: Device-Independent Design, and De-
vice-Specific Design.

With Device-Independent Design, a state diagram or architectural specification is first
translated into a PLDasm file without a target device in mind. This allows a designer to
test a design concept by building the logic and simulation section together in an iterative
loop. The design can be simulated and reworked until it is functionally correct. Once the
design is working, the full compilation process can be executed to fit the design into a
target device and generate a JEDEC file. Simulation can still be run during this stage to
test any changes made to help fit the design into a device.

The major benefit of Device-Independent Design is that it allows a designer to concen-
trate more on the conceptual aspect of the design first, then on the concrete implementa-

llUll Auc WdIJWLI 101 uua dppludbu lb uldl. S0mc ucblgua Can xuu\«uuu \.chl.uy, uul, uxa'y'
not be able to fit into a specific device architecture without some changes.

With Device-Specific Design, the target device is in mind from the start. Creation of the
design and fitting of the design occur together. Since a designer will already be familiar
with the architecture that has been chosen, any unique features of that architecture can
be comprehended as the design is developed. Fitting occurs during each pass through the
compiler.

The major benefit of Device-Specific Design is that the designer knows that if the de-
sign compiles, it has already been fitted. The tradeoff for this approach is that the full
fitting process must be run on each pass through the compiler.

Each approach is discussed in greater detail in the following sections.

o
£
£
=
£
7]
°
£
a

£

]
o

PLDshell Plus/PLDasm User’s Guide 5-1

Device-Independent Design

With Device-Independent design, the logic and simulation sections for a design are built
up together without a target device in mind. During processing, the PLDasm file is
parsed and the design simulated, but the design file is not fitted. The minimizer is also
run if it has been selected. The simulation results are viewed to verify that the design is
functioning as intended. The design can be changed until everything is working as it
should. This phase of the design process is implemented via the “Simulate Only” option
in the Compile/Sim menu.

At this point, the designer attempts fitting the design into a device using the “Compile
Only” or “Compile Then Simulate” options. The “Compile Only” option runs the fitter
but does not re-simulate the design. The “Compile Then Simulate” option minimizes,
fits, then re-simulates the design. If the design does not fit on the first attempt, the
designer enters a second iterative loop. During this phase the design is altered, not to
implement new functions but to shift existing functions to better fit device resources.

Sample Design

With Device-Independent design, the designer will often begin with a state diagram of
the design. An example of this is the state diagram shown in Figure 5-1. This is a 4-bit
up/down counter featuring Reset and Set inputs. The design is implemented as a Moore
State Machine.

ool

F100530

Figure 5-1. 4-Bit Counter State Diagram

Figure 5-2 is an example PLDasm listing of the design. Note that in the declaration
section the CHIP line includes the reserved device name “INTEL_ARCH”.

Once the design has been implemented in a PLDasm source file, the designer would
process the file through the parser, minimizer (optional), and simulator. Note the simula-
tion section of the design. For the purposes of this discussion, only the first part of the
simulation section is shown. (The file called UPDOWN.PDS in your installation direc-
tory contains the complete simulation section.)

5-2 PLDshell Plus/PLDasm User’s Guide

Title 4-Bit Up/Down Counter

Pattern none

Revision 1.0

Author John Doe

Company Intel

Date 07-19-91

CHIP updown INTEL_ARCH

PIN clock ; clock input
PIN up ; count up

PIN down ; count down
PIN reset ; reset flip-flops
PIN set ; set flip-flops
PIN q0 ; lsb

PIN ql i .

PIN q2 i

PIN q3 ; msb

STATE MOORE_MACHINE

= /a3 * /92 * /ql * /q0 sl =/93 * /g2 * /q1l * QO
= /93 * /g2 * ql * /q0 s3 = /93 * /q2 * ql * QO
= /g3 * g2 * /ql * /q0 sS = /g3 * g2 * /ql * QO
=/q3 * g2 * ql * /q0 s7 = /g3 * g2 * gl * qo
= Q3 * /q2 * /ql * /q0 s9 = g3 * /q2 * /ql * qO
= g3 * /92 * ql * /q0 sb= q3* /q2* ql* qO0
= g3 * q2 * /ql * /q0 sd= @3 * q2*/ql* qo0
= g3 * g * ql * /q0 sf= g * gq2* ql* qo
= upbyl -> sl + dnbyl -> sf
= upbyl -> s2 + dnbyl -> s0
= upbyl -> s3 + dnbyl -> sl

upbyl -> s4 + dnbyl -> s2

upbyl -> s5 + dnbyl -> s3

upbyl -> sé + dnbyl -> s4

upbyl -> s7 + dnbyl -> s5

upbyl -> s8 + dnbyl -> s6

upbyl -> s9 + dnbyl -> s7

upbyl -> sa + dnbyl -> s8

upbyl -> sb + dnbyl -> s9

upbyl -> sc + dnbyl -> sa

upbyl -> sd + dnbyl -> sb

upbyl -> se + dnbyl -> sc

upbyl -> sf + dnbyl -> sd

upbyl -> s0 + dnbyl -> se

Figure 5-2. Sample Device-Independent Design

o
£
5
=3
E
w i
@
£
.a‘
13
o
Q

PLDshell Plus/PLDasm User’s Guide 5-3

CONDITIONS
upbyl = up * /down dnbyl = /up * down

EQUATIONS
q0.clkf = clock ql.clkf = clock
q2 clkf = clock q3.clkf = clock
q0.rstf = reset gl.rstf = reset
g2.rstf = reset g3.rstf = reset
q0.setf = set ql.setf = set
q2.setf = set q3.setf = set
q0.trst = vcc ql.trst = vecc
g2.trst = vecc g3.trst = vcc
SIMULATION
VECTOR count := [g3,92,ql,q0]

SETF up /down /reset /clock
PRLDF /q0 /ql /q2 /q3

SETF clock

SETF reset /clock

SETF /reset set

SETF /reset /set

CLOCKF clock

Figure 5-2. Sample Device-Independent Design

Figure 5-3 shows the waveforms produced by this simulation. Note that the outputs
(Q0-Q3) go high immediately after SET goes high, thus implementing an asynchronous
Set. Reset is also asynchronous, clearing the outputs to a logic low immediately after
being asserted.

NOTE

During device-independent design, all Set and Reset signals are asyn-
chronous. Depending on which device is eventually selected, the Set
signal may be implemented synchronously. Differences between de-
vice-independent and device-dependent design are described in “De-
vice-Independent Design Notes.”

5-4 PLDshell Plus/PLDasm User’s Guide

Vector 4 <F1> for Hels

T T ™ T
ACNTDI .HST (Eac)> to Exit

Figure 5-3. Device-Independent Design Waveforms

Device-Independent Design Notes

The following notes are provided to help you perform device-independent design:

1. Device-independent design allows you to design with no device resource limita-
tions. This means that you can implement options that are not supported on all
devices. Some redesign for fitting may eventually be needed when you start with
device-independent design. Areas to be aware of include:

—~ Set and Reset Signals — These are asynchronous during device-independent
processing; only those actually supported by the device are valid during
device-specific processing.

— Register Types — Any register type (D, T, JK, SR) is valid during
device-independent processing; only those actually supported by the device are
valid during device-specific processing.

—~ Input Types — Any input type (direct, latched, registered) is valid during
device-independent processing; only those actally supported by the device are
valid during device-specific processing.

o
£
£
Kot
3
E
[72]
°©
£
=
£
o
[$]

~ Register Preloads — True register preloads are supported in the Simulation
section during device-independent processing; these are converted to standard
output vectors for devices that do not support preloads during device-specific
processing. .

PLDshell Plus/PLDasm User’s Guide 5-5

— Equation Size — Any size equation can be implemented during
device-independent processing (limited only by the system memory); during
device-specific processing, equation size is limited to the number of p-terms in
the target device for successful fitting.

2. Large state machines can translate into designs that contain large numbers of p-
terms for equations. If the minimizer is not run when “Simulate Only” is selected,
these designs may take a long time to simulate. In these cases, it may be better to
enable the minimizer via the ‘‘Compile Options’’ submenu. Simulations will run
much faster when equations are minimized.

Device Specific Design

For the Device-Specific design, the same design as shown in Figure 5-2 will be used
with a few changes. The reserved device name “INTEL_ARCH” is replaced with
“85C22V10". Figure 54 shows the waveforms resulting from the Device-Specific simu-
lation. Note that the outputs (Q0-Q3) don’t go high until the rising edge of the second
clock (synchronous preset). The synchronous SET input behaves exactly as the
85C22V10 operates; this stands in contrast to the asynchronous preset for the device-in-
dependent version of the design.

Ueator . F1> for Wailp
1 S S
1
| SO
4 » - j+ b &
T v v v v
4CNTDS .3 T <Emc> to Exit

Figure 5-4. Device-Specific Design Waveforms

5-6 PLDshell Plus/PLDasm User’s Guide

Design-Specific Design Notes

When performing device-specific design, the compiler and simulator operate with full
knowledge of the target device characteristics. The following notes apply to compilation
when the target device is selected:

1.

PAL/GAL Designs — Different PLCC pinouts for devices have been adopted by
some PAL/GAL manufacturers. PLDasm is only able to fit designs that use the
standard pinout supported by Intel’s PLCC packages. You may need to change the
pin numbers in your source file when compiling designs that use PAL/GAL PLCC
device names.

PAL/GAL Designs — PLDasm does not recognize all variations of PLCC package
designators for all PAL/GAL manufacturers. To ensure recognition of PLCC
names in PLDasm source files, use an ‘‘NL’’ designator for 20-pin packages and
an *“FN’’ designator for 28-pin packages after the base part name. See Table 7-1
for all supported device names.

PAL/GAL Designs — In some cases, PLDasm performs modifications to make
sure that the final design performs in the same way as the original design. OE
inversion is performed automatically; you do not need to make this change your-
self. When modifications like this occur, a message is displayed on the screen and
a comment is placed in the PLDasm source file.

For example, registered PALS/GALs contain a dedicated active-low OE pin. Intel
UPLDs, however, use a p-term to control the OE, even for registered designs. In
this case, the software generates the appropriate p-term for an active-low OE sig-
nal. If OE is always enabled (tied to GND) in registered PAL/GAL designs, it will
be always enabled in the Intel pPLD design (tied to VCC).

PAL/GAL Designs — PLDasm fits PAL/GAL designs into Intel pPLDs. Since
WPLD architectures are supersets of PAL/GAL architectures, some designs origi-
nally targeted for Intel parts and using Intel part names will fit into Intel devices,
but will not fit into PAL/GAL devices. If backward compatibility with PAL/GAL
devices is a design requirement, source files should be compiled using only
PAL/GAL device names.

All Designs — Most Intel pPLDs contain one or more Turbo Bits that optimize
device performance for speed or power savings. The default state of the Turbo
Bits during compilation is On, which optimizes device performance for speed. If
you wish to optimize a device for power savings, you must specify TURBO=OFF
in the PLDasm source file. (The erased state of Intel uPLDs is Turbo Off.)

PLDshell Plus/PLDasm User’s Guide 5-7

o
£
s
3
E
172}
®
£
T
13
o
(]

6. All Designs — Most uPLDs have a Security Bit (sometimes called Verify Pro-
tect). The default state of the Security Bits during compilation is off, which allows
programmed devices to be read. When this bit is set On, the contents of the device
cannot be read. This provides a high degree of design security. To set this bit in
the JEDEC file, you must specify ‘‘SECURITY = ON’’ in the PLDasm source
file. (The erased state of Intel pPLDs is Security Bit Off.)

Using the PLDasm Compiler Options

The compiler options allow compilation for a variety of design considerations. Some
combinations of compiler options are not legal. Table 5-1 lists the legal combinations.
The following paragraphs explain when to use the different options.

Table 5-1. Legal Compiler Option Combinations

Expand Minimize Automatic .
Equations (Espresso) Inversion Description
No No No Do not change equations
Yes No No Expand to SOP Only
Expand, Minimize, No
Yes Yes No Automatic Inversion
Expand, Minimize, Automatic
Yes Yes Yes Inversion (Default options)
Expand, no Minimization,
Yes No Yes Automatic Inversion
All other combinations are ILLEGAL

Expand Equations

Normally set ON (Yes) — Expands equations to SOP (Sum-of-Products) form to
allow minimization and automatic inversion. All designs must be in SOP form for
minimization and fitting. In cases where equations are already in SOP form and
you may not want the compiler to make any changes, set this option to NO.

Do Not Use — When this option is set to NO, designs are passed directly to the
Fitter. Since the minimization and automatic inversion algorithms require SOP
form, the combination of Expand Equations = NO with Minimize = YES and/or
Automatic Inversion = YES is illegal.

Minimize (Espresso)

Normally set ON (Yes) — Minimizes SOP equations to least number of p-terms.
The minimizer uses the ESPRESSO-IImv logic reduction algorithm, which
reduces equations to the least number of p-terms almost all the time. Minimization
assumes all equations are in sum-of-products form.

5-8 PLDshell Plus/PLDasm User’s Guide

Do Not Use — when a design is a known fit and no changes should be made by
the compiler.

Automatic Inversion

Normally set ON (Yes) — Automatically inverts equations using DeMorgan’s
equations if the inverted form will use fewer p-terms.

Do Not Use — When automatic inversion is not seiected and the minimizer is run,
DeMorgan’s inversion rules can still be applied, but only at your discretion. The
minimizer determines if the inverted form requires less p-terms than the original
form. If so, the minimizer requests permission to use the inverted form. You can
respond “Y” or “N”.

NOTES

The 85C220-7 and 85C224-7 bhave a tpp of 7.5 ns when the invert
control is on and a tpp of 8.5 ns when the invert control is off. To
obtain faster timing for critical outputs, you must: (1) write critical
equations with the invert symbol (/) on the left-hand side of the equal
(=) symbol, (2) compile the design with automatic inversion = NO,
and (3), if the minimizer is run, answer “N” if the minimizer requests
permission to invert a critical output. Figure 5-5 shows a sample de-
sign containing two 7.5 ns outputs (fastoutl and fastout2) and one 8.5
ns output (normoutl).

The 85C22V10 and iPLD22V10 have a programmable invert option
after the register. Inverted forms of equations may cause designs to
power-up in unexpected states. Good design practice is to include a
means of reseting.designs to a known state rather than depending on
the power-up state.

Error File

Normally set ON (Yes) — Creates an error file (ERR) each time the compiler or
simulator is run. The Error file contains all the messages displayed during the
compilation/simulation process, including information and warning messages. This
file can be viewed under the View menu. The on-line help for each error message
can be accessed.

Do Not Use — if disk space is limited

PLDshell Plus/PLDasm User’s Guide 5-9

Title Example of design with critical tpd

Pattern pds

Revision

Author E.E. Designer
Company Intel

Date 9-1-91

CHIP U1l 85C224

PIN 1 clk

PIN 2 inpl

PIN 3 inp2

PIN 4 inp3

PIN S inp4

PIN 5 inpS

PIN 13 oe

PIN 15 fastoutl ; this output needs least possible delay
PIN 16 fastout?2 ; this output needs least possible delay
PIN 19 normoutl

EQUATIONS

/fastoutl inpl * fastout2 ; *** ACTIVE LOW guarantees least tpd

+ inpl * inp4

+ /inp2 * fastout2

+ /inp2 * inp4

/fastout2 = inp2 ; *** ACTIVE LOW guarantees least tpd
normoutl = fastoutl * inp4

fastoutl.trst = oe

Figure 5-5. 85C224-7 tpp Example Design

Report File

Normally set ON (Yes) — Creates the utilization report file (RPT) each time the
compiler is run. The Report file shows the final pinout of the design and shows
how resources are assigned in the final, fitted design. Appendix B discusses the
different sections of the Report files.

Do Not Use — if disk space is limited

N

Fitter Options

B

There are three Fitter options:

L1
tu
<

%
\a

Use Pin Assignments, Abort on no Fit

TR
BRPSTaES

“Lompiling/Simulaiing

This option is used when the final pinout for a design is already fixed (e.g., the
target board is already layed out). The Fitter will try to fit all resources to the pins
declared in the source file. If any pin does not fit, the process aborts with an error
message. This is the default fitting option.

5-10 PLDshell Plus/PLDasm User’s Guide

Use Pin Assignments, But Reassign if Needed

This option gives first preference to pin assignments provided by the designer. If a
design will not fit, the Fitter ignores the pin assignments for that design and will
use its auto-fit algorithms.

Ignore All Pin Assignments

This option requires the Fitter to use its automatic fitting algorithms to fit a design.
It can eliminate the need for the designer to know all the details of the device
pinout. All pin assignments in the source file are ignored. The Fitter will abort if
all attempts have failed. Note that the automatic fitting algorithms make some
assumptions about the information provided for each output. These assumptions
are described in the “Automatic Pin Assignment” section in Chapter 4.

Using the Simulation Options

The Simulation options allow the designer to show asynchronous events during stabili-
zation of outputs during each simulation step and set the maximum number of such
events. This is very useful in identifying race/glitch conditions in combinatorial or asyn-
chronously clocked designs and in tracking design problems in circuits that make exten-

Gve tice F Fandloalo
S1IVE UdU UL ICCUDDALVAD.

Show Asynchronous Events

Normally set to OFF (No) — Normally not used unless a design problem is
suspected.

Use — when you want to locate and analyze problems in the design (for example,
to analyze why outputs do not appear to function correctly). Can also be used to
observe the detailed operation of asynchronously clocked state machines.

Threshold

Normally set to 32 — The threshold range is 1 to 32,767. The default value is
normally adequate to analyze a design problem. Adjust the threshold value as
necessary to display the number of events to provide enough detail to analyze the
problem. For example, a design with numerous asynchronous events should use a
larger number.

Viewing Simulation Output Files

o
£
£
s 4
3
E
[72]
> §
£
Z
£
o 3
o

The PLDasm simulator generates two output files: (1) a history file (HST) containing
simulation results for all signals for the entire simulation, and (2) an optional trace file
(.TRF) containing simulation results for the specified signals for a defined part of the
simulation.

PLDshell Plus/PLDasm User’s Guide 5-11

The .HST file can be viewed as state table (1s and 0s) or as waveform output under the
View menu. Waveforms are viewed in graphics mode and printed in text mode. Text
mode printing uses standard ASCII characters or the extended IBM/DOS graphic char-
acter set.

Figure 5-6 shows state table output for the simulation results generated by the Simula-
tion section in Figure 4-17. This is the whole history file as it appears when output to a

printer.

; position 1 CLK s SIGNAL NAMES AND
; position 2 INl1 S POSITIONS FROM
; position 3 IN2 S HISTORY FILE
; position 4 OE S
; position S Q0 s
; position 6 Q1 s
; position 7 Q2 s
; position 8 Q3 S
; position 9 NUM M 1
; CIIO QQQQ N
" ILNNE 0123 U SIGNAL NAMES
; K12 M

0001 XXXX X

bbbE—0 INPUTS

0001 LHHL@-—- VECTORS
1001 HLHL

0001 HLHL
0000 2222
1000 2222
0000 z2zz2
1000 2222
0000 22zZ
0001 HHHL
1001 LHLH
0001 LHLH
1001 HLLH
0001 HLLH
1001 LLLH
0001 LLLH
1001 HHLH
0001 HHLH
0111 HHLH
1111 LHLL
0111 LHLL
0011 LHLL
1011 HHLL
0011 HHLL
0101 HHLL
1101 LHLL
0101 LHLL

NN WWWONNDDE OOV P INNNNNOV

Figure 5-6. Sample State Table Simulation Output

5-12 PLDshell Plus/PLDasm User’s Guide

Many programmers have the ability to use test vectors to perform a functional test on
PLDs after programming. Input and output values from the .HST file are also used to
generate these test vectors for the JEDEC file. Notes on test vectors are provided in
“Test Vector Notes.”

The .TRF file can be used to isolate the critical signals you need to check during simula-
tion. This file is output in state table (1s and Os) format only.

Simulation Notes

The following notes describe some behaviors of the simulator that may be important for
certain types of designs:

1. If the data to a register changes state at the same time as a valid clock edge
occurs, one of the following behaviors will occur:

a) For synchronously clocked registers (i.e., registers clocked by the dedicated
clock pin), the data presented to the register input will not be clocked
through the register during the current clock cycle. This bebavior emulates
the synchronous clocking behavior of PLDs, which require that data meet a
setup time to the clock edge.

b) For asynchronously clocked registers (i.e., registers clocked by a p-term
from the logic array), the data presented to the register input will be clocked
through the register during the current clock cycle. The behavior emulates
the asynchronous clocking behavior of PLDs, which have a much shorter (or
no) setup time to the clock edge.

2. Executing the SETF command on a vector without an assignment sets all bits of
the vector to the specified logic level (logic 1 or logic 0). For example, the follow-
ing sequence declares a vector (NUM), sets all bits of NUM to 1, then clears all
bits of NUM to 0.

VECTOR NUM = [Q3 Q2 Q1 Q0]
SETF NUM
SETF /NUM

A more appropriate way is to assign the vector as follows:

VECTOR NUM = [Q3 Q2 Q1 QO]
SETF NUM := OXF
SETF NUM := 0x0

PLDshell Plus/PLDasm User’s Guide 5-13

A FB extension can be used to simulate different logic states on a feedback path
and output. The example below shows simulation of pin feedback on /O pins. In
the example, OE is disabled for pin OUTA (an I/O pin). The feedback is then
driven via OUTA FB:

SETF /OE ; disable OE
SETF OUTA.FB ; drive I/0 feedback high
SETF OE ; driving I/0 pin

The .FB extension does not need to be defined in the pin declarations or in any of
the design sections It is automatically understood by the simulator.

If a valid clock edge occurs during a register preload, the register states will be
indeterminate.

Test Vector Notes

The following notes provide information that can help you create test vectors for use
during programming verification.

L.

The 85C22V10 and iPLD22V10 support true register preloads during program-
ming. Preloads in the simulation vector file are converted to JEDEC preload test
vectors. If the programmer does not support preloads, you may encounter an error
when performing a program test.

With the exception of the 85C22V10 and iPLD22V10, the test vec:ors in the
JEDEC file for the preload simulation command (PRLDF) are simple output state
values (SETFs), not true preload values. If you plan to use test vectors during
programming for other devices, use the preload command only once at the begin-
ning of the Simulation section to set registers to their power-up state. Use of the
preload command elsewhere or with values other than the power-up value will
cause wamnings during the fitting process. Test vectors beginning with an illegal
preload are not placed in the JEDEC file to eliminate the chance of programming
errors. Note, however, that the programming test in this case can be much less
thorough than expected.

During compilation, test vectors are automatically generated from the .HST file
with the same base filename of the PL.Dasm file. If you do not include a simula-
tion section in your current design file, but have a .HST file from a previous
design that used the same filename, PLDasm will generate test vectors from the
earlier design and include them in the JEDEC file for the new design. This will
probably cause programming test failures. Deleting old .HST files when a design
is complete will prevent this problem from occurring.

5-14 PLDshell Plus/PLDasm User’s Guide

Chapter 6 — Using the Utility Programs

PLDshell Plus provides utility programs for processing files between different source
and target file formats. This section describes how to use the Dlsassembly, Conversion,
and Translation utilities.

Disassembly

The disassembly program processes a JEDEC file and creates a PDS source file. The
JEDEC file can be for a supported non-Intel device, however, the resulting PDS source
file will be for an Intel device only. Disassembly of Intel uPLD JEDECs is also sup-
ported.

The options available on the Disassemble submenu are:
Input Filename — This is the JEDEC input file with the JED extension.

Source Device — This is the source device for which the JEDEC file was
originally generated. Pressing the <SPACE> key displays a list of supported
source devices. Once the source device is selected, the target Intel device is
automatically selected and displayed on the right.

Package Type — Sets the package type. Pressing the <SPACE> key displays a
list of package types for the device selected in the Source Device field.

Output Filename — Displays the output filename that will be created during
disassembly. The default is the target device name plus the .PDS extension.

Disassembling...

INFO JDBMAC: 85C224 JEDEC Disassembly in Progress...
Processing Macrocell [1]

Processing Macrocell (2]

Processing Macrocell (3]

Processing Macrocell (4]

Processing Macrocell (5]

Processing Macrocell (6]

Processing Macrocell [7]

Processing Macrocell (8]

INFO JDBMAC: Disassembly Successfully Completed.
Disassembly Successfully Completed.

Press ENTER to Continue...

Figure 6-1. Disassembly Messages

PLDshell Plus/PLDasm User’s Guide 6-1

@
3
=
=
2
Q
£
=
o
£
@
3

Figure 6-1 shows the messages displayed during disassembly. Figure 6-2 shows a .PDS
file created from the 4COUNT.JED file (created by compiling the 4COUNT.PDS file in
your installation directory). This is a simple design using two inputs and four I/O
macrocells to implement a 4-bit counter.

; OPTIONS TURBO=OFF

CHIP Ul 85C224

PIN 1 in1 ; pin 1 is synchronous clock for any
; registers.
PIN 2 in2
PIN 3 NC
PIN 4 NC
PIN 5§ NC
PIN 6 NC
PIN 7 NC
PIN 8 NC

PIN 9 NC
PIN 10 NC
PIN 11 NC
PIN 12 GND
PIN 13 NC
PIN 14 NC
PIN 15 iols
PIN 16 iolsé
PIN 17 iol7
PIN 18 iols
PIN 19 NC
PIN 20 NC
PIN 21 NC
PIN 22 NC
PIN 23 NC
PIN 24 vcc

EQUATIONS

io18 := in2 * /{015 * iol8
+ in2 * /iolé * iols
+ in2 * /iol7 * iol8
+ in2 * iol5 * iol6 * 1017 * /iol8
i018.TRST = VCC
iol7 := in2 * /iolS5 * iol7
+ in2 * /iolé * iol7
+ in2 * iolS * iol6 * /iol7
i017.TRST = VCC
{ol6 := in2 * /iol5 * iolé
+ in2 * iolS * /iolse
iol6 .TRST = VCC
iol5 := in2 * /iolS
i015.TRST = VCC

Figure 6-2. Disassembled 4ACOUNT.JED File

6—2 PLDshell Plus/PLDasm User’s Guide

Disassembly Notes

The following notes apply to JEDEC disassembly:

1.

For All Designs — During generation of a PLDasm source file, the disassembly
program creates signal names based on the pin to which signals are mapped, e.g.,
“in8" means “input pin 8", “io13" means "I/O pin 13", etc. You may wish to edit
the resulting PLDasm source file to change the signal names before compiling the
file.

For PAL/GAL Designs — Different pinouts have been adopted for PLCC devices
by some PAL/GAL manufacturers. PLDshell Plus normalizes these different
pinouts to the standard pinout supported by Intel’'s PLCC packages. This is re-
ferred by most manufacturers as an ‘‘NL’’ package for 20-pin packages and an
“FN” package for 28-pin packages. Please note this possible pinout difference
when disassembling designs from PAL/GAL JEDEC files.

For PAL/GAL Designs — In some cases, modifications are performed during dis-
assembly to ensure that the final design performs in the same way as the original
design. OE inversion is performed automatically; you do not need to make this
change yourself. When modifications like this occur, a message is displayed on
the screen and a comment is placed in the PLDasm source file.

For example, registered PALs contain a dedicated active-low OE pin. Intel uPLDs,
however, use a p-term to control the OE, even for registered designs. In this case,
the software generates the appropriate p-term for a active-low OE signal. If OE is
always enabled (tied to GND) in registered PAL/GAL designs, it will be always
enabled in the Intel uPLD design (tied to VCC).

For PAL/GAL Designs — JEDEC disassembly creates .PDS files that fit into Intel
WPLDs. Since uPLD architectures are supersets of PAL/GAL architectures, some
designs converted to .PDS files for Intel devices will no longer compile for
PAL/GAL devices using other logic compilers. If backward compatibility with
PAL/GAL devices is a design requirement, .PDS files should be compiled using
both PLDasm and your existing logic compiler.

For All Designs — Most Intel pPLDs contain one or more Turbo Bits that opti-
mize device performance for speed or power savings. The default state of the
Turbo Bits during disassembly is On, which optimizes device performance for
speed. If you wish to optimize a device for power savings, you must edit the
resulting PLDasm source file to specify ‘“‘TURBO=OFF’’. (The erased state of
Intel uPLDs is Turbo Off.)

For PAL/GAL Designs — JEDEC files for PALs/GALs using early versions of
PALASM software do not contain a field called the fuse count field (QF field) or
have the fuse count field in a non-standard position. This will cause an error mes-
sage to be displayed early during the disassembly. To correct this error, open the

PLDshell Plus/PLDasm User’s Guide 6-3

o
2
=
£ .
=
o
£
£
o
£
u
2

JEDEC file using a text editor and insert the proper QF field (see Table 6-1). The
fuse field must be inserted immediately after the header record (i.e., immediately
after the first “*”). The asterisk after the fuse count is required.

Table 6-1. Fuse Count (QF) Fields

Part Fuse Field
16L8 QF2048*
16R4 QF2048*
16R6 QF2048*
16R8 QF2048"
16V8 QF2194*
20L8 QF2560*
20R4 QF2560"
20R6 QF2560*
20R8 QF2560*
20V8 QF2706*
22V10 QF5828*
22VP10 QF5838*
22V10ES QF5892*

JEDEC Conversion

PLDshell Plus provides the capability to convert existing JEDEC files for common
PALSs/GAL:s into JEDEC files for Intel uPLDs. A PLDasm source file is generated as a
part of the conversion process. (JEDEC conversion consists of disassembly followed
automatically by compilation.)

The options available on the Convert JEDEC submenu are:

Input Filename — Displays a list of JEDEC files to convert. The default
extension is .JED.

Source Device — Sets the source device to be used. Pressing the <SPACE> key
displays a list of devices. When the source device has been selected, the target
Intel device is automatically selected and displayed on the right.

Package Type — Sets the package type. Pressing the <SPACE> key displays a
list of package types for the device selected in the Source Device field.

6—4 PLDshell Plus/PLDasm User’s Guide

Output Filename — Displays the output filename that will be created during
conversion. The default name is the target device name with a JED extension.

Figure 6-3 shows the messages displayed during JEDEC conversion process. These mes-
sages were generated while converting the file EX20V8.JED in your installation direc-
tory. This design uses all available inputs and outputs.

Running Conversion..

INFO JDBMAC: 20V8 -> 85C224 Disassembly in progress
Processing Macrocell (1]

Processing Macrocell (2]

Processing Macrocell (3]

Processing Macrocell [4]

Processing Macrocell (5]

Processing Macrocell (6]

Processing Macrocell (7]

Processing Macrocell (8]

INFO JDBMAC: JEDEC Disassembly Successfully Completed.
INFO PARPDS: Parsing file: 85C224.pds

INFO PARPDS: File parsed correctly.

INFO PARPDS: Equation Expansion Complete.

INFO FIT: Design compiled into 85C224.

INFO ASM: JEDEC file Assembled.

Disassembly Successfully Completed.

Press ENTER to Continue...

Figure 6-3. JEDEC Conversion Messages

Conversion Notes

The following notes apply to JEDEC conversion:

1. For All Designs — During generation of a PLDasm source file, PLDshell Plus
creates signal names based on the pin to which signals are mapped, e.g., “in8"
means “input pin 8", “iol3" means "I/O pin 13", etc. You may wish to edit the
resulting PLDasm source file to change the signal names, then recompile the file.

2. For PAL/GAL Designs — Different pinouts have been adopted for PLCC devices
by some PAL/GAL manufacmrers. PLDshell Plus normalizes these different
pinouts to the standard pinout supported by Intel’s PLCC packages. Please note
this possible pinout difference when converting designs from PAL/GAL JEDEC
files.

3. For PAL/GAL Designs — In some cases, modifications are performed during dis-
assembly to ensure that the final design performs in the same way as the original
design. OE inversion is performed automatically; you do not need to make this
change yourself. When modifications like this occur, a message is displayed on
the screen and a comment is placed in the PLDasm source file.

o
£
=
o)
£
w
=

PLDshell Plus/PLDasm User’s Guide 6-5

For example, registered PALS/GALSs contain a dedicated active-low OE pin. Intel
WUPLDs, however, use a p-term to control the OE, even for registered designs. In
this case, the software generates the appropriate p-term for an active-low OE sig-
nal. If OE is always enabled (tied to GND) in registered PAL/GAL designs, it will
be always enabled in the Intel uPLD design (tied to VCC).

4. For PAL/GAL Designs — JEDEC conversion creates .PDS and JED files for Intel
UPLDs. Since uPLD architectures are supersets of PAL/GAL architectures, some
designs converted to .PDS files for Intel devices will no longer compile for
PAL/GAL devices using other logic compilers. If backward compatibility with
PAL/GAL devices is a design requirement, .PDS files should be compiled using
both PLDasm and your existing logic compiler.

5. For All Designs — Most Intel WPLDs contain one or more Turbo Bits that opti-
mize device performance for speed or power savings. The default state of the
Turbo Bits during compilation is On, which optimizes device performance for
speed. If you wish to optimize a device for power savings, you must edit the
resulting PLDasm source file to specify TURBO=OFF, then recompile the source
file using the Compile/Sim menu selection. (The erased state of Intel pPLDs is
Turbo Off.)

6. For PAL/GAL Designs — JEDEC files for PALs/GALs using earlier versions of
PALASM software do not contain a field called the fuse count field (QF field) or
have the fuse count field in a non-standard position. This will cause an error mes-
sage to be displayed early during the disassembly. To correct this error, open the
JEDEC file using a text editor and insert the proper QF field (see Table 6-1). The
fuse field must be inserted immediately after the header record (i.e., immediately
after the first “*”). The asterisk after the fuse count is required.

7. During JEDEC conversion, the PLDasm compiler is run with Expand Equations =
Yes, Minimize = No, and Automatic Inversion = No. If you want to compile with
different options, recompile the intermediate .PDS file from the Compile/Sim
menu.

6—-6 PLDshell Plus/PLDasm User’s Guide

Translation

PLDshell Plus provides the capability of translating ADF/SMF source files (originally
written for iPLS II) into PDS source files that can be compiled by PLDasm. Figure 6-4
shows translation flow.

ISTATE Translate

F100524

Figure 6-4. SMF/ADF Translation Flow

The options on the Translate submenu are:
Input Filename — Displays a list of ADF/SMF files to be translated. The input
filename can have any legal basename, but must have a .ADF or .SMF extension.
The default extension is .ADF; for SMF files, you can type in the .SMF extension.

Output Filename — Displays the filename selected in the Input Filename field
but with a .PDS extension.

Example Translation

Figure 6-5 shows the messages displayed during translation of a .SMF file to an .ADF
then to a .PDS file. Note the message lines,

WARNING 4380-ADFSEM: Output signal feeds nothing - Sx

These messages are displayed as redundant state name entries are removed during trans-
lation; they can be ignored.

Figure 6-6 shows the COUNT.SMF file, which is in your install directory. This is a
32-bit binary counter targetted for an 85C060. Figure 6-7 shows the file COUNT.ADF,
which can be created by translating the .SMF file. The original state machine syntax has
been converted to comments and the state machine functionally has been implemented

o
g
=2
o
<
s
o
£
u
32

PLDshell Plus/PLDasm User’s Guide 6-7

Translating...
INFO ISTATE: CONVERTING COUNT.SMF to COUNT.adf

INFO PARADF: Parsing file: COUNT.ADF
WARNING 4380-ADFSEM: Output signal feeds nothing — Sx

WARNING 4380-ADFSEM: Output signal feeds nothing — Sx
INFO PARADF: File parsed correctly.

INFO PARADF: Equation expansion complete.

Translation Successfully Completed.

Press ENTER to Continue...

Figure 6-5. Translation Messages (SMF/ADF)

in Boolean equations and T-type registers. Comments are not translated. Figure 6-8 sho
the resulting translated .PDS file.

Translation Notes

The following notes apply to ADF/SMF-to-PDS translation:

1. During translation, state machines and truth tables converted to Boolean equations
they are loaded. Thus, the .PDS source file generated by the translation utility will 1
contain state machine and truth table syntax. The original state names and truth ta
names, however, are preserved in the Boolean equations.

2. Macro calls in ADF/SMF designs are expanded into their Boolean equation i
plementations during translation. The original macros appear in the .PDS file as co
ments to help in tracing the translation process. The original signal names :
preserved.

3. Comments in the ADF/SMF input files are not translated.

4. If not specified in the ADF/SMF file, TURBO=ON is set in the PDS options secti

This is a change from iPLS II, where the default was TURBO=COFF if the state of

Turbo Bit was not specified.

6-8 PLDshell Plus/PLDasm User’s Guide

Name

Intel

January 13, 1988
1

a

5C060

Large Counter

OPTIONS: TURBO=ON

PART: 5C060

INPUTS: CLK

OUTPUTS: SMO, SM1, SM2, SM3, sM4

NETWORK :

CLK = INP(CLK)
MACHINE: COUNTER
CLOCK: CLK
STATES:

S0
s1
s2
sS3
s4
sS
S6é
s7
s8
s9
s10
s11
s12
s13
s14
s15
s16
s17
s18
s19
s20
s21
S22
s23
S24
s25
S26
527
s28
s29
S30
s31

SM4 SM3 SM2 SM1 SMO
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

PR R R PP RPHPOO0OO0O0O00O0ORKRRPHEHREROOOOOOOO
FHR PP HOOOORKHPHHROOOOKRKRKFHOOOOHKRHEROOOO
FHOORFROORHOOHHOORHOORROORRPROORKHO

FOROHOHOHROHROHOHOROROROROROHORPORO

Figure 6-6. COUNT.SMF Sample File Listing

PLDshell Plus/PLDasm User’s Guide 6-9

123
2
=
=
p=
o
£
=
o
£
123
o

("]
9
=
E

2

o
<

£

o
£

]
2

S0:
Sl:
S2:
S3:
S4:
SS:
S6:
s7:
S8:
S9:
S10:
S11:
S12:
S13:
S14:
S15:
S16:
S17:

S19:
S20:
S21:
S22:
S23:
S24:
$25:
S26:
s27:
S28:
S29:
S30:
S31:
ENDS

s1
s2
s3
sS4
sS

s7
s8
s9
s10
s11
Ss12
s13
s14
s15
s16
s17
si8
s19
s20
s21
S22
S23
s24
s25
S26
s27
s28
s29
s30
s31
S0

Figure 6-5. COUNT.SMF Sample File Listing (Continued)

6—10 PLDshell Plus/PLDasm User’s Guide

Name

Intel

January 13, 1988
1

a

5C060

Large Counter

iSTATE Release XX, YY 2.22
OPTIONS: TURBO=ON

PART: S5C060

INPUTS:

CLK

OUTPUTS:

5M0, SM1l, SM2, SM3, sM4

NETWORK :

CLK = INP(CLK)

%

1/0's for State Machine “COUNTER”

]

SM4, SM4 = TOTF(SM4.t, CLK, GND, GND, VCC)
SM3, SM3 = TOTF(SM3.t, CLK, GND, GND, VCC)
SM2, SM2 = TOTF(SM2.t, CLK, GND, GND, VCC)
SM1, SM1 = TOTF(SMl.t, CLK, GND, GND, VCC)
SM0, SMO = TOTF(SMO.t, CLK, GND, GND, VCC)
EQUATIONS:

3

Boolean Equations for State Machine “COUNTER”
]

%

Current State Equations for “COUNTER”

%

SO = SM4’*SM3'*SM2’*SM1’'*SMO’;

S1 = SM4’*SM3’ *SM2'*SM1’'*SMO;

S2 = SM4’*SM3'*SM2’*SM1*SMO';

S3 = SM4 ' *SM3' *SM2'*SM1*SMO;

S4 = SM4' *SM3' *SM2*SM1‘*SMO’;

S5 = SM4’ *SM3'*SM2*SM1‘'*SMO;

S6 = SM4'*SM3’'*SM2*SM1*SMO’;

S7 = SM4 ' *SM3’ *SM2*SM1*SMO;

S8 = SM4’ *SM3*SM2' *SM1’*SMO’;

S9 = SM4'‘ *SM3*SM2' *SM1'*SMO;

S10 = SM4'’*SM3*SM2’*SM1*SMO’;

S11 = SM4'’ *SM3*SM2'*SM1*SMO;

S12 = SM4’ *SM3*SM2*SM1'*SMO’;

S13 = SM4’ *SM3*SM2*SM1’*SMO;

S14 = SM4'*SM3*SM2*SM1*SMO’;

S15 = SM4’' *SM3*SM2*SM1*SMO;

S16 = SM4*SM3'*SM2’*SM1’*SMO’;

S17 = SM4A*SM3’ *SM2’*SM1’' *SMO;

S18 = SM4*SM3’*SM2’'*SM1*SMO’;

s19 - .
515 SM4*SM3/ *SM2' *SM1*SMO;

S20 = SM4*SM3' *SM2*SM1’'*SMO’;
S21 = SM4*SM3'*SM2*SM1’*SMO;
S22 = SM4*SM3’*SM2*SM1*SMO’;
S23 = SM4*SM3’ *SM2*SM1*SMO;

S24 = SM4*SM3*SM2' *SM1’'*SMO’;

Figure 6-6. COUNT.ADF Input File Listing

PLDshell Plus/PLDasm User’s Guide 6-11

S25 = SM4*SM3*SM2’' *SM1’'*SMO;
S26 = SM4*SM3*SM2‘'*SM1*SMO’;
S27 = SM4*SM3*SM2’*SM1*SMO;
S28 = SM4*SM3*SM2*SM1’*SMO’;
S29 = SM4*SM3*SM2*SM1’*SMO;
S30 = SM4*SM3*SM2*SM1*SMO’;
S31 = SM4*SM3*SM2*SM1*SMO;
%
SV Defining Equations for State Machine “COUNTER”
%
SM4.t = sS15 * si6.n
+ 831 * s0.n;
SM3.t = S7 * S8.n
+ S15 * s16.n
+ S23 * S24.n
+ S31 * s0.n;
SM2.t = S3 * s4.n
+ S7 * s8.n
+ S11 * s12.n
+ S15 * Sié.n
+ S19 * s20.n
+ 523 * S24.n
+ S27 * s28.n
+ S31 * sO.n;
SMl.t = s1 * s2.n
+ S3 * s4.n
+ S5 * s6.n
+ 87 * sS8.n
+ 89 * s10.n
+ S11 * s12.n
+ S13 * Sl4.n
+ S15 * Sl6.n
+ S17 * si8.n
+ S19 * S20.n
+ S21 * S22.n
4+ 523 * s24.n
+ 825 * S26.n
+ S27 * s28.n
+ S29 * S30.n
+ S31 * s0.n;
SMO0.t = VCC;
%
Next State Equations for State Machine “COUNTER”
%
s2.n = (S1);
S4.n = (S3);
Sé.n = (S5);
s8.n = (87);
S10.n = (89);
S12.n = (s11);
S14.n = (S13);
S16.n = (S15);
S18.n = (8S17);
S20.n = (S19);
S22.n = (S21);
S24.n = (S23);
S26.n = (8S25);

Figure 6-6. COUNT.ADF Input File Listing (Continued)

6-12 PLDshell Plus/PLDasm User’s Guide

s28.n = (S27);
S30.n = (S29);
S0.n = {S31);
END$
Figure 6-6. COUNT.ADF Input File Listing (Continued)
Name
Intel

January 13, 1988

1

a

5C060

Large Counter

iSTATE Release XXX, YYY

OPTIONS
TURBO = ON
CHIP 5C060 5C060

PIN CLK

PIN SMO0

PIN SM1

PIN SM2

PIN SM3

PIN SM4

EQUATIONS

SM4.T := /SM4 * SM3 * SM2 * SM1 * SMO
+ SM4 * SM3 * SM2 * SM1 * SMO

SM4 .CLKF = CLK

SM4 .RSTF = GND

SM4 .SETF = GND

SM4 .TRST = VCC

SM3.T := /SM4 * /SM3 * SM2 * SM1 * SMO
+ /SM4 * SM3 * SM2 * SM1 * SMO
+ SM4 * /SM3 * SM2 * SM1 * SMO
+ SM4 * SM3 * sSM2 * SM1 * SMO

SM3.CLKF = CLK
SM3 .RSTF = GND
SM3.SETF = GND
SM3.TRST = VCC
SM2.T := /SM4 /SM3 * /SM2 * SM1 * SMO

= *

+ /SM4 * /SM3 * SM2 * SM1 * SMO

+ /SM4 * SM3 * /SM2 * SM1 * SMO

+ /SM4 * SM3 * SM2 * SM1 * SMO
+ SM4 * /SM3 * /SM2 * SM1 * SMO
+ SM4 * /SM3 * SM2Z * SM1 * SMO
+ SM4 * SM3 * /SM2 * SM1 * SMO
+ SM4 * SM3 * SM2 * SM1 * SMO

SM2.CLKF = CLK

SM2 .RSTF = GND

Figure 6-7. COUNT.PDS Output File Listing

PLDshell Plus/PLDasm User’s Guide 6-13

-
e
-
=
pe B2
o7
=
=

or
£
v
=

SM2.SETF = GND

SM2 .TRST = VCC

SM1.T := /SM4 * /SM3 * /SM2 * /SM1 * SMO
+ /SM4 * /SM3 * /SM2 * SM1 * SMO
+ /SM4 * /SM3 * SM2 * /SM1 * SMO
+ /SM4 * /SM3 * SM2 * sSM1 * SMO
+ /SM4 * SM3 * /SM2 * /SM1 * SMO
+ /SM4 * SM3 * /SM2 * SM1 * SMO
+ /SM4 * SM3 * SM2 * /SM1 * SMO
+ /SM4 * SM3 * SM2 * SM1 * SMO
+ SM4 * /SM3 * /SM2 * /SM1 * SMO
+ SM4 * /SM3 * /SM2 * SM1 * SMO
+ SM4 * /SM3 * SM2 * /SM1 * SMO
+ SM4 * /SM3 * SM2 * SM1 * SMO
+ SM4 * SM3 * /SM2 * /SM1 * SMO
+ SM4 * SM3 * /SM2 * SM1 * SMO
+ SM4 * SM3 * SM2 * /SM1l * SMO
+ SM4 * SM3 * SM2 * SM1 * SMO

SM1.CLKF = CLK

SM1.RSTF = GND

SM1.SETF = GND

SM1.TRST = VCC

SMO.T := VCC

SMO0.CLKF = CLK

SMO.RSTF = GND

SMO .SETF = GND

SMO .TRST = VCC

6—14 PLDshell Plus/PLDasm User’s Guide

["3
2
=
2

©
£

]

o
£

w
pe

Chapter 7 — Device Descriptions

This Chapter describes Intel uPLDs supported by PLDasm. The global architecture and
macrocell architecture for each of these devices is discussed, together with possible de-
vice configurations. Detailed information for all Intel pPLDs is provided in the Pro-
grammable Logic Handbook and related publications. Tables at the start of this chapter
summarize device features and list part and package names.

)
2
Q:
=
a
=1
Q
o
-}
(=8
o 4
L
>
o,
Qs

The information describes Intel’s high-speed iPLDxxx and 85Cxxx families, the
5ACxxx Advanced Architecture family, and the 5Cxxx Standard Architecture family of
HPLDs.

Device Names/Feature Summary

Table 7-1 lists the supported Intel pPLD and PAL designations and package types.
Table 7-2 lists the features of Intel uPLDs.

PLDshell Plus/PLDasm User’s Guide 7-1

a
=4
K]
=
-
=
7]
@
1
[=]
o
2
>
“.
[=}

Table 7-1. Supported PLDs, Packages, and Device Names

. Compiled To For
Intel uPLD Package Device Name JEDEC
Device-Independent “Simulate Only”; No
(None) None INTEL_ARCH JEDEC Created
iPLD610 DIP iPLD610 iPLD610
PLCC iPLD610N iPLD610N
iPLD910 DIP iPLD910 iPLD910
PLCC iPLD910N iPLD910N
iPLD22V10 DIP iPLD22V10 iPLD22V10
PLCC iPLD22V10N iPLD22V10N
85C220 DIP 85C220 85C220
PLCC N85C220 N85C220
85C224 DIP 85C224 85C224
PLCC N85C224 N85C224
85C22V10 DIP 85C22V10 85C22V10
PLCC N85C22V10 N85C22V10
85C060 DIP 85C060 85C060
pPLCC N85C060 N85C060
85C090 DIP 85C090 85C090
PLCC N85C090 N85C090
85C508 DIP 85C508 85C508
PLCC N85C508 N85C508
5AC312 DIP 5AC312 5AC312
PLCC N5AC312 N5AC312
5AC324 DIP 5AC324 5AC324
PLCC N5AC324 N5AC324
5C031 DIP 5C031 5C031
5C032 DIP 5C032 5C032
5C060 DIP 5C060 5C060
pPLCC N5C060 N5C060
5C090 DIP 5C090 5C090
PLCC N5C090 N5C090
5C180 PLCC N5C180 N5C180

Note: The iPLD16V8XP and iPLD20V8XP are not directly supported by PLDshell Plus. These
parts use a standard 16V8 or 20V8 JEDEC file and cross-programming algorithms on your Data
/O or other third-party programmer.

7-2 PLDshell Plus/PLDasm User’s Guide

Table 7-1. Supported PLDs, Packages, and Device Names

Compiled to For

Other PLDs Package Device Name JEDEC
16L8 DIP 16L8 85C220
PLCC 16L8NL N85C220
16R4 DIP 16R4 85C220
PLCC 16R4NL N85C220
16R6 DIP 16R6 85C220
PLCC 16R6NL N85C220
16R8 DIP 16R8 85C220
PLCC 16R8NL N85C220
16V8 DIP 16V8 85C220
PLCC 16V8BNL N85C220
20L8 DIP 20L8 85C224
PLCC 20L8FN N85C224
20R4 DIP 20R4 85C224
PLCC 20R4FN N85C224
20R6 DiP 20R6 85C224
PLCC 20R6FN N85C224
20R8 DIP 20R8 85C224
PLCC 20R8FN N85C224
20V8 DIP 20v8 85C224
PLCC 20V8FN N85C224
20V10 DIP 22V10 iPLD22V10
PLCC 22V10FN iPLD22V10N
22VP10 DIP 22V10 85C22V10
PLCC 22V10FN N85C22V10

PLDshell Plus/PLDasm User’s Guide 7-3

o
c
8
=
2
- 3
o
0
]
=]
@
8
S
.
a:.-

Table 7-2. Intel PLD Feature Comparison

[
[
S
2
Q.
=
Q
(73
Q
(=]
Q
8
>
Q
Q-

85C220 IPLD22v1QiPLD610|iPLD910
5C031 50032 85C224 |85C22Vv10| 85C060 | 85C090 | 5C180 |5AC312 | 5AC324
5C060 | 5C090

INPUTS
Dedicated 10 10 14 12 4 12 12 10 12
Maximum 18 18 22 22 20 36 60 22 36
Registars - Yooy
vo
Number 8 8 8 10 16 24 48 12 24
Tri-State Y Y Y Y Y Y Y Y Y
Eg‘}gﬁ‘y‘"’“ab"’ Y Y Y Y Y Y % Y
Dual-Feedback v Y Y
MACROCELLS 8 8 8 10 16 24 48 12 24
REGISTERS
Number 8 8 8 10 16 24 48 12 24
Types D D D D DI’EI’}(?S/ D/'S/I?Sl DIE/‘?SI D/'S/ES/ D/'S/'?S/
By-Pass Y Y Y Y Y Y Y Y Y
Reset P-term Y@ Y@ Y Y Y Y Y
Preset P-term Y@ Y@ Y Y
PRODUCT
TERMS
Number 74 72 72 132 160 240 480 200 394
Allocation Y Y
LOCAL/GLOBAL Y
BUSES
CLOCKS 1 1 1 1@ 2 2 4 2 2
pmchonous vl vy]y
SECURITY BIT Y Y Y Y Y Y Y Y Y
TURBO BIT Y® Ye Y Y Y Y Y Y
Notes:
1. Dual-feedback on Global Macrocells.
2. These are global p-terms.
3. 7.5 ns version of 85C220 and 85C224 do not contain a Turbo-Bit.
4. 85C22V10 includes a clock invert option for each macrocell.

7-4 PLDshell Plus/PLDasm User’s Guide

85C220

The 85C220 uPLD is a high-performance CMOS, pin-compatible, functional superset of
20-pin 16R8/R6/R4/1.8/V8 PALs/GALs. Figure 7-1 shows the architecture of the
85C220 puPLD. Its 10 inputs and 8 I/O macrocells allow it to perform the same functions
as 20-pin PALs/GALSs. Its universal feedback from all 8 I/O pins makes it a superset of
16L8 and 16V8 devices, which do not allow feedback on the first and last I/O pins.

Pevice Desctiptions

GLOBAL

INPUTS cLocK vo
1 D—'{XL LOGIC ARRAY g3 19
2 >—{3] @ RL
s 5 1
« O—3] g
[O
s O—{3—]
g£315
s O—3—]
7 >—3] 31
s DO—3—]
313
s DO—3—]
£y 12
1 D—{3]

100282

Figure 7-1. 85C220 Global Architecture

Figure 7-2 shows the macrocell architecture of the 85C220 uPLD. Note that there are 8
p-terms available at all times to the Sum-of-Products input. This is a superser feature
over 16L8s and 16V8 combinatorial macrocells which only provide 7 p-terms (the 8th
p-term on those devices is used for the OE control).

The 85C220 provides an additional superset feature in the form of a separate OE control
(a 9th p-term) that is available at all times. With standard 20-pin registered PALs, a
global OE control is provided, but designers cannot independently enable/disable regis-
ter output buffers. GALs operate in the same way, using a global OE for all registers in
the device. But with the 85C220, designers have independent access to all output buff-
ers.

PLDshell Plus/PLDasm User’s Guide 7-5

)
c
]
2
[N
=
o
(73
]
.a
o
2
o
o
Q

FEEDBACK

F100022

Figure 7-2. 85C220/85C224 Macrocell

An invert control is also provided for each macrocell. This allows any output to be
individually configured as active high or active low. This is another superset feature
over standard 20-pin PALs.

A final superset feature is the ability to configure each macrocell individually for com-
binatorial or registered logic, with feedback from all 8 macrocells. With standard 20-pin
PALs, you must work within the fixed architecture of the device and must stock multi-
ple devices. With the 85C220 a single device provides greater design flexibility.

The 85C220 is pin-, function-, and JEDEC-compatible with the Intel/ALTERA/TI
5C032, EP320, and EP330 PLDs.

85C224

The 85C224 uPLD is high-performance, pin-compatible, functional superset of 24-pin
20R8/R6/R4/L8/V8 PALs/GALs. Figure 7-3 shows the architecture of the 85C224
UPLD. Its 14 inputs and 8 I/O macrocells allow it to perform the same functions as
24-pin PALs/GALSs. Like the 85C220, it has universal feedback from all 8 macrocells.

The macrocell architecture of the 85C224 uPLD is identical to the 85C220 (see Figure
7-2). Thus the compatibility with PALS/GALS is the same; so are the following superset
features:

¢ 8 p-terms available at all times to the Sum-of-Products input for each macrocell.

* Separate OE control p-term available at all times for individual OE control.

7-6 PLDshell Plus/PLDasm User’s Guide

¢ Inversion control available for each macrocell allows independent configuration of
each output as active high or active low.

¢ Each macrocell can be individually configured as a combinatorial or registered out-
put, with feedback from all 8 macrocells.

@
c
-]
=
o
=R
o
I
]
a
o
2
>
-
=

GLOBAL
cLocK vo
INPUTS MACROCELLS
INP1/CLK D_(E_‘LJ PROGRAMMABLE
AND ARRAY
4 x72
wnp2 (O—{3] vo.1
N3 [O—{3] .2
NP4 [O—3
j vo.3
INPS [DO—{3]
NPs [D>—{%] y vo.4
NP7 [D>—{3 |
vo.5
NP8 [D>—{3]
NP9 [>—{3] vo.6
NP1 [D>—{3
vo.7
NP1 [D>—{3]
P12 [O—{3] vo.s
INP13 [D>—{3]
NP4 >3]
F 100308

Figure 7-3. 85C224 Global Architecture

PLDshell Plus/PLDasm User’s Guide 7-7

iPLD22V10/85C22V10

The iPLD22V10 pPLD is a high-performance, pin-compatible, CMOS version of the
industry-standard 22V10 PLD. The iPLD22V10 can be programmed using standard
22V10 JEDEC files generated by most logic compilers.

[}
c
g
=
=
[3]
(73
[
a -
']
L
>
(]
a

The 85C22V10 uPLD is a high-performance, pin-compatible, functional superset of the
industry-standard 22V10 PLD. The 85C22V10 can be programmed using standard
22V10 JEDEC files generated by most logic compilers when the superset features are
not being used. An extended JEDEC file is needed if you desire to use the supersel
features.

Figure 7-4 shows the architecture of the iPLD22V10/85C22V10 uPLD. Its 12 dedicated
inputs and 10 /O macrocells, with 8-16 p-terms per macrocell, are the same as other
22V10 devices. The devices have universal feedback from all 10 macrocells, a global
synchronous preset, and a global asynchronous clear. Each macrocell can be individually
configured as a registered or combinatorial output, either active high or active low. The
number of p-terms available for macrocells varies from 8 to 16.

The macrocells on the Intel 85C22V10 (shown in Figure 7-5) contain two superset fea-
tures that make it more flexible than standard the iPLD22V10. These features are de-
scribed below.

One superset feature is an alternate I/O configuration that allows more feedback options
than the iPLD22V10. Table 7-3 compares the feedback options of an iPLD22V10, a
22VP10, and the Intel 85C22V10 uPLD.

An additional superset feature is a programmable invert option on the synchronous clock
input to each macrocell. This option allows registers to be clocked on the rising or
falling edge of the clock signal. This ability to use the falling edge of the clock signal
can provide designers increased system margin on set-up times in many applications.

Note that these devices have an inverter following the register. When using the Clear
and Preset p-terms to set the output of the register to a known state when the inverter is
also enabled, the signal at the output pin will be the opposite of the internal register
state. This is also a consideration during device power-up.

Refer to Chapter 4, “PLDasm File/Language” for syntax information about using these
superset features.

7-8 PLDshell Plus/PLDasm User’s Guide

AR
PROGRAMMABLE —{H
AND ARRAY R
(44 x132) ’ u.é?a'?. “ (3 ves
cLkanpo [O—e— 3 > ==
s— | []
0 o Ho>eg) Vo8
et [O———3] -ty
— ||
np2 O———5] " m g3 vor
NP3 O——— 3 S !!
INPA [>———— 5 4
e W
. o N o3 Vo5
INPS [D>—— 3] Dy A
e N
g3 vo.
nps [O——3] 2+ Em 3 ol
4
wpr oO——3] “ 1 ey V03
S
N [O———{ 3 S !!'l‘
g J 0.2
ole P
nps O——3 | Z II
o Yoz V0.1
o 1
1o oO——{3—]
4
— .
ety O——5— U @f‘ 3 vos
4
- SP F100392

Figure 7-4. iPLD22V10/85C22V10 Global Architecture

PLDshell Plus/PLDasm User’s Guide 7-9

[}
=4
-
=
2
=
Q
3
@
Q.
[
2
=
Fra
(=

OE
—D
|°_ ___________ 1
| L] |
AR VO PN
6 o | l o 3
PRODUCT ® o Q I
TERMS ¢ I
l o 3 Q I
) > 1 ©= |
| CLOCK OUTPUT
I INVERT FEEDBACK >_® SEL.ECT
FEEDBACK SELECT St
: = |
|
| ﬁé I
I ______ J F100415
CLOCK INVERT AND S2 FEEDBACK BIT ONLY AVAILABLE ON 85C22V10
Figure 7-5. 85C22V10 Macrocell
Table 7-3. 85C22V10 Macrocell Configurations
S2 S1 SO Output/Polarity Feedback
0 0 0 Registered/Active Low Registered
0 0 1 Registered/Active High Registered
0 1 0 Combinatorial/Active Low Pin
0 1 1 Combinatorial/Active High Pin
1 0 0 **Registered/Active Low Pin
1 0 1 **Registered/Active High Pin
1 1 0 *Combinatorial/Active Low Registered
1 1 1 *Combinatorial/Active High Registered
*Not available on iPLD22V10 or 22VP10
**Not available on the iPLD22V10

7-10 PLDshell Plus/PLDasm User’s Guide

iPLD610/85C060

The iPLD610 and 85C060 are a high-performance, high I/O count uPLDs that are speed
upgrades to the following devices:

"]
c
o
2
o .
=
o
a
1}
o
>
82
>

s O 4
a

¢ Intel/ALTERA 5C060/EP600 PLDs
¢ ALTEKRA/TI EP610 and EP630 PLDs
* AMD PALCE630 PLDs.

The iPLD610 and 85C060 are the fastest members of this industry-standard architecture
and are pin-, function-, and JEDEC-compatible with this family of devices.

As shown in Figure 7-6, these devices feature 16 /O macrocells in 24-pin DIP and
28-pin PLCC packages. Four dedicated inputs and two dedicated clocks (one clock for
each bank of 8 registers) complete the device architecture. CLK1 clocks the registers on
half the device; CLK2 clocks the registers on the other half.

Figure 7-7 shows the macrocell architecture. Note that 8 p-terms are available to the
SOP input at all times. Each macrocell contains an inversion control bit that allows any
output to be individually configured as active high or active low. Finally, the OE p-term
on each macrocell can be used as an asynchronous clock when not needed to control the
macrocell output buffer. This allows up to 16 asynchronous clocks to be generated inter-
nally via logic equations.

The output from each macrocell can be independently configured as combinatorial or
registered. Four different register types are available for each macrocell: D-type, T-type,
JK-type, and SR-type. This wide range of features makes the iPLD610/85C060 architec-
ture ideally suited for register- and /O-intensive designs. (JK- and SR-registers are emu-
lations.)

Figures 7-8 shows the device clocking. Refer to Chapter 4, “PLDasm File/Language” for
syntax information on clocking pPLDs. There are two synchronous clock inputs. Each
clock input drives eight registers. If more than eight registers are connected to the same
synchronous clock input, both clock pins are needed to implement the circuit. In this
event, the pin diagram on the Utilization Report shows both pins as clocks with a mes-
sage to tie both pins together.

PLDshell Plus/PLDasm User’s Guide 7-11

@
c
2
=
a
"=
]
@
o
(=]
o
2
>
@
[=]

INPUTS
14
4
CLK1 D——~I
10
vo9 £33 PROGRAMMABLE vo.1
AND ARRAY
40 x 160
1/0.10 vo.2
vo.11 vo.3
v0.12 3 vo.4
vo.13 3 vo.s
vo.14 3 vo.6
vo.15 vo 3 vo.7
MACROCELL
vo.16 © vo vo.s
MACROCELL
— ck2
F100385

Figure 7-6. iPLD610/85C060 Global Architecture

7-12 PLDshell Plus/PLDasm User’s Guide

OF/CLK
SELECT
CLK
vo
ARCHITECTURE
CONTROL
FEEDBACK

CLEAR
(RESET)

SYNCHRONOUS
cLocK

«T

3% 37

T

.
M

s
-

u

T

T

2r 2

TuTuTaT2T2T=T

T

° " 13 Il_ 17 “- I! ?_

e |10
- -

7
L]

Figure 7-7. iPLD610/85C060 Macrocell

PLDshell Plus/PLDasm User’s Guide 7-13

o
=
3]
a
@
Q.
.
R
>
[}
a3

REGISTER CLOCKING (SYNCHRONOUS)

)
c
8
a
=
)
@
1]
(=]
@
2
S .
@
(=8

REGISTER CLOCKING (ASYNCHRONOUS)

o —— —_—— — —
| ANY LOGIC] r—
INPUT THAT CAN BE | |
EXPRESSED | N
IN1P-TERM | |
ANY INPUT
EXCEPT CLOCK
PIN F100611
Figure 7-8. iPLD610/85C060 Clocking
iPLD910/85C090

The iPLD 910 and 85C090 are high-performance, high I/O count pPLDs that are speed
upgrades to the following devices:

¢ Inte/ALTERA 5C090/EP900 PLDs
* ALTERA/TI EP910 and EP930 PLDs

The iPLD910 and 85C090 are the fastest member of this industry-standard architecture
and is pin-, function-, and JEDEC-compatible with this family of devices.

As shown in Figure 7-9, the devices feature 24 I/O macrocells in 40-pin DIP and 44-pin
PLCC packages. Twelve dedicated inputs and two dedicated clocks (one clock for each
bank of 12 registers) complete the device architecture. CLK1 clocks the registers on half
the device; CLK2 clocks the registers on the other half.

Figure 7-10 shows the macrocell architecture. Note that 8 p-terms are available to the

SOP input at all times. Each macrocell contains an inversion control bit that allows any
output to be individually configured as active high or active low. Finally, the OE p-term

7-14 PLDshell Plus/PLDasm User’s Guide

CLK1

vo.21

J

]

Snn i dndndnln] Jpin]

INPUTS
1-12

10
PROGRAMMABLE

AND ARRAY
72x 240

oA
H

Y
H

Y
s

A
-
o

M
H

oM M
3

Y
s

M
-
°

M
H

M
s

>

10

10

10

10

CLK2

F100378

Figure 7-9. iPLD910/85C090 Global Architecture

on each macrocell can be used as an asynchronous clock when not needed to control the
macrocell output buffer. This allows up to 24 asynchronous clocks to be generated inter-
nally via logic equations.

PLDshell Plus/PLDasm User’s Guide 7-15

a
= 4
o
a
o
(=]
N
2 3
>
o
Q

sNId 0= £ SNId LndM =

6450014

SNid 0/1 NV LNdNI TV101 9¢

MMMMMM ¢ e MMMMMM
1 , (Uasay)
— 1 yvad
(13838)
uvao
{ ¢
)
i s
T0ULNOD
3UNLITUMOYY 1 — ¥
on
on s

~

% a R
29A 1{1ll1l]L|l]|l e @@ ﬁ-- 1)L ﬁ-r -ﬁ

X530 N2010
SNONOUHONAS

Figure 7-10. iPLD910/85C090 Macrocell

suondiasag 331AdQq

7-16 PLDshell Plus/PLDasm User’s Guide

The output from each macrocell can be independently configured as combinatorial or
registered. Four different register types are available for each macrocell: D-type, T-type,
JK-type, and SR-type. This wide range of features makes the 85C090 architecture ide-
ally suited for register- and I/O-intensive designs. (JK- and SR-registers are emulations.)

)
<
o
=
Q..
=
o
«
L
Q]

Figure 7-11 shows the device clocking. Refer to Chapter 4, “PLDasm File/Language”
for syntax information about clocking pPLDs. There are two synchronous clock inputs.
Each clock input drives 12 registers. If more than 12 registers are connected to the same
synchronous clock input, both clock pins are needed to implement the circuit. In this
event, the pin diagram on the Utilization Report shows both pins as clocks with a mes-
sage to tie both pins together.

REGISTER CLOCKING (SYNCHRONOUS)

1 TO 24 REGISTERS

INPUT
CLOCK

REGISTER CLOCKING (ASYNCHRONOUS)

[awriosc | ——

ANY LOGIC
INPUT | THAT can BE I |
EXPRESSED | LN
IN1P-TERM [|
ANY INPUT - - o
EXCEPT CLOCK
PIN

Figure 7-11. iPLD910/85C090 Clocking

PLDshell Plus/PLDasm User’s Guide 7-17

85C508

The 85C508 is a high-speed pPLD designed for address decoding/latching in microcom-
puter systems. This device contains 16 dedicated inputs, 8 latched outputs and one
global latch enable (LE) signal.

o
c
=]

2
o

=
[t
a
o

[=]
L]

8
>
[

[=8

Figure 7-12 shows the global architecture of the 85C508. Each of the outputs is a trans-
parent latch fed by a single NAND p-term.

o]
=

LATCH

INP1 D—{T 1
INP2 D—-{} e

LATCH

INP3 D'—D G

WY

TYYYYYYY

o
[

o
@

Y

[} LATCH
——o
° D LaTeH os
. r—10
L]
Do os
——a
D o I o7
—1a
INP16 D—{}
1D PP o
—io

§

Figure 7-12. 85C508 Global Architecture

7-18 PLDshell Plus/PLDasm User’s Guide

SAC312

The SAC312 is a device that provides eight programmable inputs, 12 /O pins, and two
inputs that can serve as clocks or dedicated inputs (see Figure 7-13). Associated with
each I/O pin is a macrocell that can be programmed to provide registered or combinato-
rial output. D, T, JK, or SR registers are supported (JK- and SR-registers are emula-
tions). Each macrocell supports from 0 to 16 p-terms through a proprietary p-term
allocation scheme. Each macrocell also supports 2 p-terms on its Clear, Preset, Output
Enable, and Asynchronous Clock inputs. Registers can be clocked synchronously from
the global clock (CLK).

The eight p-terms for each macrocell are organized as two groups of four p-terms each
(see Figure 7-14). Each group of four p-terms can be allocated to an adjacent macrocell
when not needed for the current macrocell. If more than eight p-terms are needed for a
macrocell, p-terms can be allocated from adjacent macrocells. The 12 macrocells are
organized into two rings of six macrocells. P-term allocation is supported within a ring.
Allocation between the two rings is not supported. Table 7-4 lists the p-term allocation

Table 7-4. SAC312 Previous/Next Macrocells

Ring 1 Ring 2
Current Next Previous Current Next Previous
Macrocell Macrocell Macrocell Macrocell Macrocell Macrocell
1 2 5 7 8 12
2 3 1 8 9
3 4 2 9 10 8
4 5 3 10 1 9
5 6 4 1 12 10
6 1 5 12 7 1

rings and the previous/next macrocells for each macrocell in the SAC312.

Figure 7-15 shows the programmable inputs of the SAC312. Each programmable input
can be configured as a flow-through input, an input latch, or an input register. Inputs
configured as a latch or register can be clocked by the global ILE/ICLK signal or asyn-
chronously by a p-term from the logic array.

Figure 7-16 shows the device clocking for the SAC312 and the 5AC324. Refer to Chap-
ter 4, “PLDasm File/Language” for syntax information on clocking uPLDs

PLDshell Plus/PLDasm User’s Guide 7-19

(7}
c
8
=
G
[
Q
[=1
Q
K vo —
2 RING 1 ,— MACROCELL K 3 vo.1
a GLOBAL CLOCK
——————————t
l—' MACRGCELL K_J Vo2
LOGIC ARRAY |
CLKANP1 [I
r wcroca [TE 3 V03
LINP1 I
. SPY
LINP2
I— L) £ Jvos
MACROCELL = d
LINP3 I
— — wenocan [TE I UOS6
LINP4
LINP6 I—' mcavgcm K Jvos
LINP7 :" wacAocar [T V09
LINPS vo v
L o
ILE/ICLKANP2 l
l_ mcavchx.L K_4von
F100523

Figure 7-13. 5AC312 Global Architecture

7-20 PLDshell Plus/PLDasm User’s Guide

suonduosag as1aa(

9150043

Nid 0n

NOV8O33d Nid
MOVEA33d4 TYNYIALNI _
TEO0HOWW TBO0HOW

SNOIAIHd NOHS Y SNOIA3Yd O1

= e

"HONASY
{8X10) 10 'HONASY Qum
19 'HONAS

XN

3

H31so3y
TBOOHOW
1

A

135384
"HONASY

indino

TBOOBOWW v TEOOHOW
LGN wodd LENOL

e

> SWd3L-d
JIVH H3IMOT

AVHHY 21007

Figure 7-14. SAC312 Macrocell

PLDshell Plus/PLDasm User’s Guide 7-21

INPUT [OD—+p a T(Z kggl{c

LATCH/ CLOCK/ENABLE
REGISTER SELECT

P-TERM
o FROM LOGIC
ARRAY
LATCHREG.
SELECT

ILEACLK [

)
c
2
a
=
a
@
o
a
@
2
S
@
(=]

NOTE: SOFTWARE IMPLEMENTS A DIRECT (FLOW-THROUGH) INPUT
BY SELECTING AN ASYNCHRONOUS LATCH AND TYING ITS
CONTROL P-TERM TO VCC.

100088

Figure 7-15. SAC312 Programmable Inputs

MACROCELL CLOCKING (8YNCHRONOUS) WITH LOGIC FANOUT

[Alvomachoceus
I
CLOCK |
PINT [
INPUT |
[7 77 “wicac

F100614
MACROCELL CLOCKING (ASYNCHRONOUS)
TANYLOGIC —I [T 7 T anvwacmocew
THAT CAN BE REGISTER
I EXPRESSED IN |
TWO PRODUCT
I TERMS l >
| | |-
F100616

Figure 7-16. 5AC312 Clocking

7-22 PLDshell Plus/PLDasm User’s Guide

5AC324

The 5AC324 is a device that provides 10 programmable inputs, 24 /O pins, and two
inputs that can serve as clocks or dedicated inputs (see Figure 7-17). Associated with
each I/O pin is a macrocell that can be programmed to provide registered or combinato-
rial output. D, T, JK, or SR registers are supported (JK- and SR-registers are emula-
tions). Each macrocell supports from O to 16 p-terms through a proprietary p-term
allocation scheme. Each macrocell also supports 2 p-terms on its Clear, Preset, Output
Enable, and Asynchronous Clock inputs. Registers can be clocked synchronously from
the global clock (CLK).

=
Q
o
g
(=8
[\
2
S
[
a:

The eight p-terms for each macrocell are organized as two groups of four p-terms each
(see Figure 7-18). Each group of four p-terms can be allocated to an adjacent macrocell
when not needed for the current macrocell. If more than eight p-terms are needed for a
macrocell, p-terms can be allocated from adjacent macrocells. The 24 macrocells are
organized into two rings of 12 macrocells. P-term allocation is supported within a ring.
Allocation between the two rings is not supported. Table 7-5 lists the p-term allocation
rings and the previous/next macrocells for each macrocell in the SAC324.

Figure 7-19 shows the programmable inputs of the SAC324. Each programmable input
can be configured as a flow-through input, an input latch, or an input register. Inputs
configured as a latch or register can be clocked by the global ILE/ICLK signal or asyn-
chronously by a p-term from the logic array.

Refer to Figure 7-20 for the device clocking. Refer to Chapter 4, “PLDasm File/Lan-
guage” for syntax information on clocking uPLDs.

PLDshell Plus/PLDasm User’s Guide 7-23

@
c
L
a2
=
S
@
4
a
o
2
>
]
[=)

LINPY

LINP2

LINP3

LINP4

LINPS

LINPE

LINP7

LINP8

UNP9

LINP10

ILEACLKANP2

OLOBAL CLOCK
vo.1
LOGIC ARRAY w
(GLOBAL BUS) -
°
°
°

MACROCELLS
1 THRU 12
(RING 1)

MACROCELLS
13 THRU 24
(RING 2)

F100108

Figure 7-17. 5AC324 Global Architecture

7-24 PLDshell Plus/PLDasm User’s Guide

slioifdiiasad aoinag

indino

8150014
»OV8a33d Nid
MOVEQ333 WNLIINI _
TEOOHOWW TEOOHOW
SNOIAId NOHS o 8NOIA3Ed OL
— \/Hﬁm
(@DND) 10 'HONASY @mw“
o5 srealL-d
ATVH H3ddn
< IOMINOD
U31SIO3Y AM3AN
TEOOHOWW
_ 1
Nid 07 J./_

¥ sral-d
FIVH HIMOT

13s34d
"HONASY

FEYN3
indino

TEIOOHOWW
L3N WoYd

TBOOHOW
DLAENOL

AVHHY 01007

Figure 7-18. SAC324 Macrocell

PLDshell Plus/PLDasm User’s Guide 7-25

(7]
[
o
S
=8
2
Q
(7]
[
a
]
8
>
Q
[=%

INPUT [OD—p Q Takgf‘l'c

LATCH/ CLOCK/ENABLE
REGISTER SELECT

P-TERM
[_: FROM LOGIC
ARRAY
LATCHREG.
SELECT

ILEACLK [

NOTE: SOFTWARE IMPLEMENTS A DIRECT (FLOW-THROUGH) INPUT
BY SELECTING AN ASYNCHRONOUS LATCH AND TYING ITS
CONTROL P-TERM TO VCC.

100080

Figure 7-19. 5AC324 Programmable Inputs

Table 7-5. 5AC324 Previous/Next Macrocells

Ring 1 Ring 2

Current Next Previous Current Next Previcus
Macrocell Macrocell Macrocell Macrocell Macrocell Macrocell

1 7 2 13 19 14

2 1 3 14 13 15

3 2 43 15 14 16

4 3 5 16 15 17

5 4 6 17 16 18

6 5 12 18 17 24

7 8 1 19 20 13

8 9 7 20 21 19

9 10 8 21 22 20

10 11 9 22 23 21

1 12 10 23 24 22

12 6 11 24 18 23

7-26 PLDshell Plus/PLDasm User’s Guide

LL CLOCKING { WITH LOGIC FANOUT

[iomonoceas
CLOCK
PIN1
INPUT >
L
[7 7 7 Tanwviwac
L

MACROCELL CLOCKING (ASYNCHRONOUS)

ANY LOGIC I l—_ ANY MACROCELL
THAT CAN BE REGISTER

l EXPRESSED IN | I
TWO PRODUCT

| TERMS | [P
| ! !

F100515

Figure 7-20. SAC324 Clocking

5C031

The 5C031 is a logical superset of many 20-pin bipolar PAL devices. The I/O and logic
sections of the SC031 device can be configured to emulate devices listed in Table 7-6.

As shown in Figure 7-21, the 5C031 contains 10 dedicated inputs and eight I/O pins.
These I/O pins can be individually configured to be inputs, outputs or bidirectional /O
pins. Each of these I/O pins is connected to a macrocell. The 5C031 contains eight
identical macrocells.

Each macrocell (see Figure 7-22) consists of a PLA (programmable logic array) block
and an I/O architecture block. The I/O architecture block contains a D-type register. The
PLA block consists of eight 36-input AND gates feeding into an OR gate. The output of
this PLA block is fed into the architecture control block (Figure 7-23).

Figure 7-24 shows clocking for the devices. Refer to Chapter 4, “PLDasm File/Lan-
guage” for syntax information about clocking UPLDs. The 5C031 also provides a global
Asynchronous Clear and a global Synchronous Preset p-term. Note that this device has
an inverter following the register. When using the Clear and Preset p-terms to set the

PLDshell Plus/PLDasm User’s Guide 7-27

Table 7-6. SC031 Logically Compatible PAL Devices

w
c
R
=
2
=
G
a
o
[=}
@
8
S
o
a

10H8 16L2
12H6 16L8
14H4 16R8
16H2 16R6
16H8 16R4
16C1 16P8A
10LB 16RP8A
12L6 16RP6A
14L4 16RP4A

GLoBAL
)
INPUTS MACROCELLS
PROGRAMMABLE g3 vo1
INP1/CLK AND AHAY
X
INP2 O—{F5] j vo2
Np3 O—{3] .

vo3

NP4 [O—{3]
J Vo4

INps [D—{3]
jvos

NP6 [D>—{3]
INP7 [D>—{3] j VO 6

NP8 [>—{5]
J Vo7

INPS (DO—{3
jvos

INP10 [DO—{3]

ASYNCH
F 100800

Figure 7-21. 5C031 Global Architecture

7-28 PLDshell Plus/PLDasm User’s Guide

o8

F100501

cLK
CONTROL

vo
ARCHITECTURE

FEEDBACK

SYNCH
PRESET
T
1
ASYNCH
RESET

8 s

14

27

at Zla

w © v & ®» w vw ©o ~

Figure 7-22. 5C031 Macrocell

PLDshell Plus/PLDasm User’s Guide 7-29

0"
&:
<]
=
Q
Q 4
o
o
[=}
[
8.
=
@
2

1]
c
]
=
a
=
Q
1
Q
[=}
Q
2
>
@
=]

] 3

PRODUCT o |
TEAMS o

|

| |

CONTROL

| I

I | i

| AN |

L’_I FEEDBACK I

FEEDBACK | seweer
[U S S .

F 100502

Figure 7-23. 5C031 Architecture Control Block

CLOCKING (:

ANY REGISTER

-

cLock >
L

Fromee

REGISTER CLOCKING (SYNCHRONOUS) WITH LOGIC FANOUT

ANY REGISTER

e

INP |
D>
I

cLocK

 — ANY LOGIC

Frower

Figure 7-24. 5C031/5C032 Clocking

7-30 PLDshell Plus/PLDasm User’s Guide

output of registers to a known state while also using the inverter, the signal at the output
pin will be the opposite of the internal register state. This is also a consideration during
device power-up.

=
Q
[
@
Q.
@
L
>
Q-
3

5C032

The 5C032 uPLD is a high-performance CMOS, pin-compatible, functional superset of
20-pin 16R8/R6/R4/L8/V8 PALs/GALs. Figure 7-25 shows the architecture of the
5C032 puPLD. Its 10 inputs and 8 I/O macrocells allow it to perform the same functions
as 20-pin PALs/GALs. Its universal feedback from all 8 I/O pins makes it a superset of
16L8 and 16V8 devices, which do not allow feedback on the first and last /O pins.

Figure 7-26 shows the macrocell architecture of the 5C032 uPLD. Note that there are 8
p-terms available at all times to the Sum-of-Products input. This is a superset feature
over 16L8s and 16V8 combinatorial macrocells which only provide 7 p-terms (the 8th
p-term on those devices is used for the OE control).

The 5C032 provides an additional superset feature in the form of a separate OE control
(a 9th p-term) that is available at all times. With standard 20-pin registered PALs, a
global OE control is provided, but designers cannot independently enable/disable regis-
ter output buffers. GALs operate in the same way, using a global OE for all registers in
the device. But with the 5C032, designers have independent access to all output buffers.

An invert control is also provided for each macrocell. This allows any output to be
individually configured as active high or active low. This is another superset feature
over standard 20-pin PALs.

A final superset feature is the ability to configure each macrocell individually for com-
binatorial or registered logic, with feedback from all 8 macrocells. With standard 20-pin

PALs, you must work within the fixed architecture of the device and must stock multi-
ple devices. With the 5C032, a single device provides greater design flexibility.

The 5C032 is pin-, function-, and JEDEC-compatible with the Inte/ALTERA/TI 5C032,
EP320, and EP330 PLDs.

NOTE

For a higher speed version of this architecture, see the 85C220.

PLDshell Plus/PLDasm User’s Guide 7-31

INPUTS

' D—Bi LOGIC ARRAY

o
c
]

2
a.

=
o
173
-}

[=}
o

2
>
)

(=]

Figure 7-25. 5C032 Global Architecture

PRODUCT © | :Ell I I vo PN
.
TERMS o [Q1 i —K
|
1
|

FEEDBACK

F100022

Figure 7-26. 5C032 Macrocell

7-32 PLDshell Plus/PLDasm User’s Guide

5C060

The 5CO60 is a standard architecture, high I/O count uPLD. As shown in Figure 7-27,
the 5C060 features 16 I/O macrocells in a 24-pin package. Four dedicated inputs and
two dedicated clocks complete the device architecture. CLK1 clocks the registers on
half the device (8 registers); CLK2 clocks the registers on the other half (8 registers).

»
c
21
=
Q.
=
Q 1
o
]
Q
o
2
=

F o
(=8¢

Figure 7-28 shows the macrocell architecture. Note that 8 p-terms are available to the
SOP input at all times. Each macrocell contains an inversion control bit that allows any
output to be individually configured as active high or active low. Finally, the OE p-term
on each macrocell can be used as an asynchronous clock when not needed to control the
macrocell output buffer. This allows up to 16 asynchronous clocks to be generated inter-
nally via logic equations.

The output from each macrocell can be independently configured as combinatorial or
registered. Four different register types are available for each macrocell: D-type, T-type,
JK-type, and SR-type. This wide range of features makes the SC060 architecture ideally
suited for register- and I/O-intensive designs. (JK- and SR-registers are emulations.)

Figure 7-29 shows the device clocking. There are two synchronous clock inputs. Each
clock input drives eight registers. If more than eight registers are connected to the same
synchronous clock input, both clock pins are needed to implement the circuit. In this
event, the pin diagram on the Utilization Report shows both pins as clocks with a mes-
sage to tie both pins together. Refer to Chapter 4, “PLDasm File/Language” for syntax
information about clocking uPLDs.

NOTE

For a higher speed version of this architecture, see the
iPLD610 and 85C060.

PLDshell Plus/PLDasm User’s Guide 7-33

(%]

=

9

s

=

Q

3

3 INPUTS

g 1-4

2 4

a CLK1 D——l
vos K3 PROGRAMMABLE vo.1

AND ARRAY
40 x 160
vo.10 — 3 vo.2
vo.1 3 vo.3
vo.12 J V0.4
vo.13 3 vo.s
vo.14 J VO.6
vo.15 3 vo.7
v0.16 3 vo.s
CcLK2
F100365

Figure 7-27. 5C060 Global Architecture

7-34 PLDshell Plus/PLDasm User’s Guide

. ,wco_atummn. cw_>.mm

g

-Z0®n

-0-®

-0-o
-0

p el LEED]

< -zan
Ja-0-m
LF8-o-«
(}—D ~-o+=n
(_:}—C! -0~
- -on-
(J—G -za -~

Z:}--G -Zaw

_, uasay)

Q

Q3say)
¥van

1 ¥vap

TOHINOD

FYNLOILINOHY
on

193138
x1730 €901
SNONOUHINAS

PLDshell Plus/PLDasm User’s Guide 7-35

Figure 7-28. SC060 Macrocell

REGISTER CLOCKING (SYNCHRONOUS)

@
c
S

2
o

=
o
@
©

[=]
P

2
>
>

[=]

1 TO 16 REGISTERS

[_ —
INPUT '
cLOCK D—I——>

e e —_ e —

REGISTER CLOCKING (ASYNCHRONOUS)

——— —_—— —
l ANY LOGIC I [_
INPUT THAT CAN BE |
EXPRESSED | s
IN1P-TERM | |
ANY INPUT L — e
EXCEPT CLOCK
PIN

Figure 7-29. 5C060 Clocking

5C090

The 5C090 is a standard architecture, high /O count pPLD. As shown in Figure 7-30,
the 5C090 features 24 I/O macrocells in a 40-pin package. Four dedicated inputs and
two dedicated clocks complete the device architecture. CLK1 clocks the registers on
half the device (12 registers); CLK2 clocks the registers on the other half (12 registers).

Figure 7-31 shows the macrocell architecture. Note that 8 p-terms are available to the
SOP input at all times. Each macrocell contains an inversion control bit that allows any
output to be individually configured as active high or active low. An asynchronous clear
p-term is also available for each macrocell. Finally, the OE p-term on each macrocell
can be used as an asynchronous clock when not needed to control the macrocell output
buffer. This allows up to 24 asynchronous clocks to be generated internally via logic
equations.

The output from each macrocell can be independently configured as combinatorial or
registered. Four different register types are available for each macrocell: D-type, T-type,
JK-type, and SR-type. This wide range of features makes the SC090 architecture ideally
suited for register- and I/O-intensive designs. (JK- and SR-registers are emulations.)

Figure 7-32 shows the device clocking. There are two synchronous clock inputs. Each

clock input drives 12 registers. If more than 12 registers are connected to the same
synchronous clock input, both clock pins are needed to implement the circuit. In this

7-36 PLDshell Plus/PLDasm User’s Guide

event, the pin diagram on the Utilization Report shows both pins as clocks with a mes-
sage to tie both pins together. Refer to Chapter 4, “PLDasm File/Language” for syntax
information about clocking pPLDs.

INPUTS
1-12
12
CLK1
1o.18 PROGRAMMABLE d vo.{
AND ARRAY
72x 240

vo.14 4 vo.2
vo.18 d O3
vo.18 J Vo4
vo.17 J vos
vo.1s d vo.s
vo.19 J V0.7
vo.20 J vo.s
vo.21 d VYO.9
vo.22 4 VO.10
vo.zs vo.11
vo2¢ K3 d V0.12

cLK2

F10037e

Figure 7-30. 5C090 Global Architecture

NOTE

For a higher speed version of this architecture, see the
iPLD910 and 85C090.

PLDshell Plus/PLDasm User’s Guide 7-37

SNidOn= 3 SNId LndN =]

6150014

SNid O/ ANV LNdNI V101 9¢

LN KR A

/\m (m
1 , (13saw)
\- 1 yvaw
(13s34)
yvI
1 ¢
1 9
|
70HINOD 'S
JYNLIILIHOHY iy
on
on 1 ¢
1 ¢
30 bt
1
Q
: ! ;| Mo0T1d
. —J ' "HONASVAO
20A 1]1ijLj1Lf{l|lL @ @ @ L % J R S R R I
193138 4 1 L 41 1 4L 1L 1L L 1 1 %
3930 ¥2010
SNONOHHONAS

Figure 7-31. 5C090 Macrocell Architecture

suonduasaq asineq

7-38 PLDshell Plus/PLDasm User’s Guide

REGISTER CLOCKING (SYNCHRONOUS)

]
[
o
=
Q..
et
Q
]
]
< a
-
2
>
-
o

REGISTER CLOCKING (ASYNCHRONOUS)

——— il

ANY LOGIC] [_
INPUT THAT CAN BE | |
EXPRESSED N
IN 1 P-TERM
ANY INPUT \e
EXCEPT CLOCK
PIN

Figure 7-32. 5C090 Clocking

5C180

The 5C180 is a 68-pin uPLD that is divided into four identical quadrants A, B, C, and
D. Each quadrant contains 4 dedicated inputs, one dedicated clock input and 12 pro-
grammable I/O pins. Each I/O pin is associated with a macrocell with 8 p-terms and an
architecture control block (see Figure 7-33).

The architecture control block allows selection of D, T, JK, or SR registers or combina-
torial output. JK- and SR-registers are emulations. Each quadrant is fed by a synchro-
nous clock input. The clock inputs can also feed the p-term array. Each macrocell also
supports a single p-term asynchronous clock input that can be used instead of the syn-
chronous clock. There is also a single p-term clear and an output enable input. Table
7-7 shows the macrocell groups for the SC180.

Within each quadrant, there are two different types of macrocells: Local Macrocells and
Global Macrocells. Both types share an 88-input AND array and contain a total of 10
p-terms. Eight p-terms are dedicated for logic implementation. One p-term is reserved
for Asynchronous Clear; one p-term is for Output Enable/Asynchronous Clock im-
plementation.

Local Macrocells (see Figure 7-34) provide one feedback path into the AND array.
Combinatorial, registered, or pin feedback can be selected from the Feedback Select

PLDshell Plus/PLDasm User’s Guide 7-39

o
c
]
2
a.
=
7]
a
-}
[=}
©
L
>
o
(=%

QUADRANT A QUADRANT D
w3 H o _= M€ 3o
w3 [weremss [- (] [weems 1 T500
wil 3 H (LOCAL le—] —_—m (LOCAL H v
w3 gH e |] £ el ENMANCED) | | 35w
vo 32 H fo—of & ! & e H &L Jvo
wEIgH et k3l] Ryl ! E——O
w3 5H (LOCAL e @ fe—] o @ leol (LOCAL H 3£
vo 3 g’[‘ cenermay || % L - % r_. GENERAL) | | g L TS0
o 4 MACROCELLS - g L) g - MACROCELLS 13 o
vo 38 H Roce e+ =~][] Machoca H e & dve
vo E‘[: M (GLOBAL) 1 [+ e I ol (GLOBAL) :] j‘D”
w3 H =1 [e B e % € 3vo
L L -
SiNPUTS D—L—Ez g}E—CIw»un
@
oK1 D——-o-[‘) a < F——<Jeixa
a
k2 D——-‘»—E} g (1«»—(:::.“
L @ »]
3iNPUTS > —D <:}~-»’4—C:] SimnruTs
rn_ X
w3 H e
w3 [‘acroceis wcroceus H FgYuo
13- 18 33-28
w3 H ey - o (GLOBAY] ag @
vo £ 3 § B § E-] E ap @)
s Fi CELL $
wEI3—5H “TE 3 I B HiFw
vo E3— SH (LOCAL . 3 (LOCAL HE €S
5 GENERAL) GENERAL) &
w3 5] : : IHESw
vo M 2 vo
o] wemmse [18 807 womemss D2 ie
w3 H (LOCAL (LOCAL H K Jvo
vo E3— ENHANCED) ewancen)][o=
QUADRANT B QUADRANT ¢ —
F100503

7-40 PLDshell Plus/PLDasm User’s Guide

Figure 7-33. 5C180 Global Architecture

Table 7-7. 5C180 Macrocell Interconnections
Pin Number | Momieel | Komtuire | Inteconnect | Clock Group
Quad A 1932 012 | Locavambal | Quad AvAI 1
ows | B3 | En e g |
Quad C 047 s | Locnyambal | Gusd CiAN 8
oo | i | nm e Cwey |

Multiplexer. The selected feedback signal is then routed to the quadrant local bus.
Therefore, the Local Macrocell feedback communicates only to macrocells within the
same quadrant. There are a total of 32 Local Macrocells within the 5C180, with eight
per quadrant.

Local Macrocells are subdivided into two groups: General Macrocells and Enhanced
Macrocells. The Enhanced Macrocells are architecturally identical to the General
Macrocells, but operate at higher speeds.

Global Macrocells (see Figure 7-35) contain two independent feedback paths to the
AND array. Combinatorial or registered feedback is supplied to the local bus and pin
feedback is supplied to the global bus. The “dual feedback” capability allows the
macrocell to be used for internal logic functions as well as a dedicated input pin. To
effectively use this configuration, the output buffer must be disabled. If the Global
Macrocell /O pin is not being used as a dedicated input, the macrocell logic can be fed
back along the global bus allowing routing to any of the 5C180’s 48 macrocells. There
are 16 Global Macrocells contained in the SC180, four per quadrant.

PLDshell Plus/PLDasm User’s Guide 7-41

w
=3
]
2
o .
=
o
w
o 3
[=}
o]
2
>
<.
a

(sT300HOWW 1)

(sT13004oWW21) NOvea33d (stndniot)
HOveo33d veoro SiNdNI
Ivo01 ao'e'v Qa3aivoia3a

ANVHAYNO ANVHOYNO wvE0®©

) =2 b

(1 4 13s3y
A\)
(] 13
\J)
('} °
- i
(4
J)
4"
i€
(1 42
21001
$10NQ0Hd-J0NNS ('} .t
\J
('} °
-
125 .
: e 1 H0010
o— _J] HONASY/30
- ww@o 1 L L L
% ot— oo] | 1 1
1o33s y
»oi3o —_—,—— e f——
. <«— 8N8V001 sne veot® —
SNONOUHONAS
ANvHavND

Figure 7-34. 5C180 Local Macrocell Architecture

suonduasaq astnad

7-42 PLDshell Plus/PLDasm User’s Guide

¥OvEa334 SN8 18010

(sT13208OWW Z1)
HOVeO033d
001
INVHOYND

g

*Ove0334 sne o0

51

(sT1300HOVW O1)
NOvea334

Ivaoe

ao'e’y
ANVHQVNO

ERERANY

Nid OA

13534 'HONASY

alajala

ﬁl QB ale

5
2

A

%2010
SNONOWHIONAS
ANvHaYNO

«— SN0 — e

<
PLDshell Plus/PLDasm User’s Guide 7-43

Figure 7-35. 5C180 Global Macrocell Architecture

SNE 1va01®

"3
c
]

2
o

=
Q
73
@

[=]
o

2
>
)

[=]

7-44 PLDshell Plus/PLDasm User’s Guide

Chapter 8 — Design Checklist

This chapter provides a checklist for designers using Intel uPLDs. This list is based on
several years experience answering calls on our technical support Hot Line. The check-
list is as follows:

1.

2.

9.

10.

Device Window Covered?

Unused Inputs and I/Os Grounded?

. Turbo Bit On or Off?

. Device Programmed Properly?

. Adequate Decoupling on VCC and GND?
. Good Ground Plane?

. Inputs Active Before Power-up?

. Operating Conditions Within Specification?

Good Connection at Leads?

Second Opinion?

Design Checklist

1.

Device Window Covered?

Intel uPLDs are fabricated using Intel’s standard EPROM process. Light entering
through the window in CerDIP packages can disturb internal voltages and may re-
sult in indeterminate behavior. Covering the window with a label or UV filter en-
sures stable bebhavior.

. Unused Inputs and I/Os Grounded?

Unused inputs on Intel’s CMOS puPLDs are connected to the logic array, even when
they are not used by the macrocells. When unused input pins are not tied high or
low, they can cause devices to draw more power than necessary. To ensure the low
power consumption, unused inputs should always be tied high or low.

For unused I/O pins, follow the directions for each pin as shown in the Report file

(.RPT). You may be instructed to tie a pin to GND or to leave it alone (RE-
SERVED).

PLDshell Plus/PLDasm User’s Guide 8-1

2
=
]

o4
2

o

[
2

(7}

)
0

3. Turbo Bit On or Off?

Most Intel uPLDs contain a Turbo Bit that optimizes device operation for speed or
power savings. When the Turbo Bit is ON, the device will always be active and will
always run at full speed. When the Turbo Bit is OFF, the device will enter standby
mode if transitions are not detected on the input or /O pins for a period of time.
When powering up from standby mode in response to the next transition, an added
delay is incurred.

Debugging problems can occur if a designer is expecting full-speed performance
(assuming the Turbo Bit is ON) and the device responds more slowly (because the
Turbo Bit is OFF). Designers should always know the state of the Turbo Bit for
devices in their design.

-
z
-3
[3}

Q

rF—
o
.~
2

[73

(]

(=]

When the Turbo Bit if OFF, but the device is being clock at higher frequencies, it
will never enter standby mode. Refer to the ‘‘ICC vs. Frequency Graph’’ for each
device in the Programmable Logic handbook to determine the frequency range
where the device will enter standby mode.

4. Device Programmed Properly?

Debugging problems can occur if a uPLD is programmed with the wrong JEDEC
file, or if the EPROM bits in a device are not fully programmed.

When experiencing problems with a design, check the following:

a. Verify the contents of the device against the original JEDEC file to make sure
the correct design has been programmed into the device.

b. Program a second device using the same JEDEC file to see if it exhibits the
same behavior.

c. Verify the device on a second programmer to catch any programmer problems.

5. Adequate Decoupling on VCC and GND?

Good decoupling practices should be followed for all designs using Intel uPLDs.
This will also help minimize any system noise, especially in higher-speed designs.
Like most other devices, Intel WPLDs can operate indeterminately when inputs are
driven past the specified input threshold levels by noisy signals.

6. Good Ground Plane?

A ground plane should be used for all designs using Intel pPLDs. This will help
minimize the impact of system noise on Intel uPLDs, especially in higher-speed
designs. Like most other devices, Intel pPLDs can operate indeterminately when
inputs are driven past the specified input threshold levels by noisy signals.

8—2 PLDshell Plus/PLDasm User’s Guide

10.

. Inputs Active Before Power-up?

Architecture bits in Intel pPLDs are loaded during device power-up. During power-
up, devices are not guaranteed to respond to active inputs until after the specified
power-up time (usually one microsecond). Refer to the power-up specification for
each device data sheet in the Programmable Logic handbook for details.

. Operating Conditions Within Specification?

Intel uWPLDs are specified to operate within certain voltage and temperature guide-
lines. If you are experiencing problems in a design, make sure that the system envi-
ronment (voltage and temperature) does not exceed the published specifications for
the devices.

. Good Connection at Leads?

Make sure that all leads on Intel puPLDs have good connections to the printed cir-
cuit board or socket. Check for bent pins and solder bridges at the device and socket
junctions.

Second Opinion?
Designers are sometimes so close to a design that they overlook a relatively simple

logic problem. It often helps to have a second designer spend a few minutes looking
over the design.

PLDshell Plus/PLDasm User’s Guide 8-3

-
2
=.
]
@
=
(8]
e
K=
[7]
Q
(=]

8—4 PLDshell Plus/PLDasm User’s Guide

Chapter 9 — Sample Designs

Table 9-1 lists and summarizes sample designs that are useful in learning to design with
PLDasm and Intel uPLDs. All examples are included with PLDshell Plus in your instal-
lation directory. Some of these files are used as illustrations in this manual. The AP-xx
and AB-xx references indicate Application Notes/Briefs in the Programmable Logic
bandbook.

Table 9-1. Example Files

Filename Description

File/Language Examples

Template file containing blank fields and major keywords. Can
TEMPLATE.PDS be used to get a design started. This is a reference file only,
not a working design.

Summary file showing examples of main PLDasm syntax
SUMMARY.PDS elements in a meaningful context. This is a quick reference file
only, not a working design.

Boolean Equations

4-bit synchronous counter in Boolean equations. Target device

4COUNT.PDS is an 85C224. lllustrates basic registered circuit design using
Boolean equations.
Same design as 4COUNT.PDS, but with an .n.s..uunal &iToT in
4ERROR.PDS the QA equation. Target device is an 85C224. Used to illustrate

the on-line error help feature. See “Getting Started"

Programmable Option Select for PS/2 Adaptor card in Boolean
PS2P0OS.PDS equations. Target device is a 5SAC312. Design is described in
AP-317.

Large XOR function in Boolean equations. Target device is an
CASCADE.PDS 85C220. lllustrates how to distribute large equations across
macrocells to help fit designs. Circuit is described in AB-8.

16-bit binary counter in Boolean Equations. Target device is an
16COUNT.PDS | g5c060. Circuit is described in AB-11.

24-bit binary counter in Boolean Equations. Target device is an
24COUNT.PDS 85C090. lllustrates use of Toggle Flip-Flops to simplify counter
design. Based on original 16-bit counter described in AB-11.

Truth Tables

7-segment decoder in Truth Table format. Target device is an
7SEG.PDS 85C220. Slightly modified from original file shipped with

) PLDshell. lllustrates Truth Table use for a simple combinatorial
design.

Address decoder in Truth Table format. Target device is an
ADDR1.PDS 85C508. Circuit is described in AP-322.

Counter implemented in Truth Table format and converted to
TCOUNT.PDS T-type Flip-Flops. Target device is an 85C060. lllustrates how
to use Truth Tables to implement counters.

PLDshell Plus/PLDasm User’s Guide 9-1

"
c
-
@
-3
(=}
2
a.
3
[
.0

Table 9-1. Example Filenames (Continued)

Filename Description
State Machine Designs
2-bit Up/Down Counter in State Machine format. Target device
2BIT.PDS is an 85C220. lllustrates use of State Machine syntax in a

simple design.

BUSCON1.PDS

Simple Bus Controller circuit in State Machine format. Target
device is an 85C224. lllustrates State Machine format for a
simple design.

DOUBLCNT.PDS

Two 4-brt counters, one synchronous, one asynchronous in
State Machine format. Target device is an 85C060. lllustrates
use of State Machine syntax in a more complex design. Also
illustrates asynchronous clocking of state machines.

EXMEALY1.PDS

Mealy State Machine example in State Machine format. Target
device is an 85C224. Used to illustrate Mealy outputs in a state
machine.

Application Examples (Mixed Format)

UPDOWN.PDS

Up/down counter in State Machine format and Boolean
equations. Device-independent design. Can be fitted to a
variety of devices. Used to illustrate the differences between
device-indpendent and device-specific deisgn.

STATEDEC.PDS

State machine feeding a decoder in State Machine format and
Boolean equations. Target device is an 85C060.

MEMCONT.PDS

Shared memory controller for EISA add-in card in State
Machine format and Boolean equations. Target device is an
85C060. Based on original circuit described in AP-339 (some
changes have been made).

PULSE1.PDS

Pulse generator examples in State Machine format and
Boolean equations. Target device is an 85C060.

Disassembly/Conversion Examples

EX16R6.JED

JEDEC file for a 16R6 design. Used to illustrate JEDEC
disassembly/conversion to Intel nPLDs. Target device is an
85C220.

EX20L8.JED

JEDEC file for a 20L8 design. Used to illustrate JEDEC
disassembly/conversion to Intel uPLDs. Target device is an
85C224.

EX20V8.JED

JEDEC file for a 20V8 design. Used to illustrate JEDEC
disassembly/conversion to Intel uPLDs. Target device is an
85C224.

9-2 PLDshell Plus/PLDasm User’s Guide

Table 9-1. Example Filenames (Continued)

Filename Description

ADF/SMF Translation Examples

Sample 4-bit store and increment circuit written in AD~ format.
SAMP1.ADF Target device is a 5AC312. Used to illustrate the ADF-to-PDS
translation utility.

Muliple state machine file in SMF format. Target device is an
MANYMACH.SMF 5AC312. Used to illustrate the SMF-to-PDS translation utility.

State machine and TTL macro circuit in SMF format. Target
MACFILE.SMF device is a 5C060. Used to illustrate the SMF-to-PDS
transiation utility.

)
c
o 4

. ?
o
[=]
2
.4
£
]
(/2]

PLDshell Plus/PLDasm User's Guide 9-3

@
c
2
w
(]
[=]
2
[
E
S
[72]

9-4 PLDshell Plus/PLDasm User’s Guide

Appendix A — Language Reference Summary

This appendix lists PLDasm information for quick reference. See also the file TEM-
PLATE.PDS in your installation directory.

Keywords and Reserved Words

The following words have defined meaning within PLDasm source files and cannot be
used as pin names or signal names. Keywords and reserved words are listed in alphabet-

ical order.
BEGIN NEXT_STATE
BURIED OFF
CHECK ON
CHIP OPTIONS
CLOCKF OR
CMBFBK OUTPUT
COMB OUTPUT_HOLD
COMBINATORIAL PIN é
CONDITIONS PINFBK
DEFAULT_BRANCH PRELOAD at
DEFAULT_OUTPUTS PRLDF g
DO REG i 2
ELSE REGFBK 3
END REGISTERED
EQUATIONS SETF
FOR SIMULATION
GND SIGNATURE
HIGH STATE
HOLD_STATE STRING
IF THEN
INPUT TO
Vo TRACE_OFF
LAT TRACE_ON
LATCHED T_TAB
LATFBK TURBO
LOW vee
MEALY_MACHINE VECTOR
MOORE_MACHINE WHILE
NC

PLDshell Plus/PLDasm User’s Guide A-1

Language Su ﬂ

Boolean Operators

Operator
/

*

Signal Extensions

Description

Active-Low in pin declaration/Boolean NOT
elsewhere

Boolean AND
Boolean OR

Boolean XOR
Combinatorial Output
Latched Output
Registered Output

Extension

nIR-D

-

.ACLK

LE
.CLKF
JTRST
RSTF
SETF
.OUTF

FB

Description

Data Input to D-type Register

J Data Input to JK Register (emulation)

K Data Input to JK Register (emulation)

R Data Input to SR Register (emulation)

S Data Input to SR Register (emulation)
Data Input to Toggle Register
Asynchronous Clock (p-term)
Asynchronous Latch Enable (p-term)
Synchronous Latch Enable

Clock Pin (Synch.) or Clock Equation (Asynch.)
Output Enable Equation

Clear Equation

Preset Equation

State Machine Output

Feedback (sometimes useful for simulation)

A-2 PLDshell Plus/PLDasm User’s Guide

Conditional Operators (Simulation Only)

= Equals

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
/= Does not equal

The following facing pages show the file SUMMARY .PDS, which illustrates many of
these language elements in a meaningful context. This is a reference file only, not a
working design.

c
[}
13
E
3
»n
L
o
©
3
o
c
q
-~

PLDshell Plus/PLDasm User’s Guide A-3

Title PLDasm Language Summary
Pattern <pattern label>
Revision <rev. numper:>
Author <your namex
Company <your company>
Date <current date>
OPTIONS
TURBO = [ON|OFF] ; default is ON
SECURITY = [ONI|OFF) ; default is OFF
; design name partname
CHIP template 85Cxxx
; Some Available Parts:
; partname speed bins
; 20 pin C/PDIP 85C220 -80(10ns Tpd),-66(12ns Tpd)
; PLCC N85C220 -7, -80(10ns Tpd), -66(12ns Tpd)
F C/PDIP 5C032 -30, -35,-40
; 24 pin C/PDIP iPLD22V10 -10, -15
; PLCC iPLD22VION -10, -15
; C/PDIP iPLD610 -10, -15, -25
; PLCC iPLD610ON -10, -15, -25
; C/PDIP 85C224 -80(10ns Tpd), -66(12ns Tpd)
; PLCC N85C224 -7, -80(10ns Tpd), -66(12ns Tpd)
H C/PDIP 85C060 -10, -12, -15
> ; PLCC N85C060 -10, -12, -15
E ; C/PDIP SAC312 -25, -30
£ ; PLCC NSAC312 -25, -30
a ; C/PDIP 85C22V10 -10, -15
° ; PLCC N85C22V10 -10, -15
2 ; C/PDIP 5C060 -45, -55
S ; PLCC NSC060 -45, -55
c ;
3 ; 28 pin C/PDIP 85C508 -7, -10 ; Decoder/Latch PLD
; PLCC N85C508 -7, -10
H 40 pin C/PDIP iPLD910 -12, -15, -20, -25
H PLCC iPLD910N -12, -15, -20, -25
; C/PDIP 85C090 -12, -15, -20, -25
; PLCC N85C090 -12, -15, -20, -25
; C/PDIP SAC324 -25, -30, -35
; PLCC NSAC324 -25, -30, -3S
; C/PDIP 5C090 -50, -60
; PLCC N5C090 -50, -60
; 68 pin PLCC N5C180 -70, -75, -90
; PGA AS5C180 -70, -75, -90
; For futher partname information, see Table 1-1 in the PLDshell
; Plus Manual. Check device data sheets for speed/timing
; information. Extended Temperature/Military versions of most
; devices are available.

A—4 PLDshell Plus/PLDasm User’s Guide

; PINLIST

PIN

PIN
PIN

PIN
PIN
PIN
PIN

PIN
PIN
PIN
PIN

1 CLOCK

UPDOWN ; undefined pin assignment
CLEAR

I1 ; Direct Inputs
12
I3
I4

s wN

Q0 ; unassigned state variables a state machine
Q1
Q2
Q3

; — Output Types -

Combinatorial Output, I/0 Feedback

PIN o1 COMB, PINFBK
; Combinatorial Output, MC Feedback
PIN 02 COMB, CMBFBK
; Combinatorial Output, Reg Feedback (85C22V10 only)
PIN 03 COMB, REGFBK
; Buried Combinatorial Macrocell
PIN 04 CMBFBK, BURIED
; Registered oOutput, I/O Feedback
PIN 0S REG, PINFBX
; Registered Output, MC Fesdback
PIN 06 REG, REGFBK
; Buried Register
PIN o7 REGFBK, BURIED
; — Input Types -
Latched Input (SAC312/5AC324)
PIN S LIN1 LATCHED
; Registered Input (5AC312/5AC324)
PIN 6 RIN1 REG

; — String Substitutions throughout file —

De
se

STRING QADS ' (ADS * PCLK * /RESET) '

STRING RASCON * ((RASO + RAS1l) * /IREADY) '’

sign Sections can appear in any order; the Simulation
ction must appear last

[STATE | - can have multiple machines

[EQUATIONS | — only one equation section allowed

[T_TAB | — can have multiple truth tables

[SIMULATION] — oniy one simulation section allow=3i

At least one STATE/EQUATIONS/T_TAB section must appear.

PLDshell Plus/PLDasm User’s Guide

Language Summary

i — State Machine Format -
STATE (MEALY_MACHINE|MOORE_MACHINE]

: 1 0 specifies output values on

; hold conditions
OUTPUT_HOLD OUT1 /0UT2

list

; 0 1 X specifies default output
i values
DEFAULT_OUTPUT /OUT1 OUT2 %0UT3
H branches for unresolved states
DEFAULT_BRANCH S0 ; go to SO
DEFAULT_BRANCH HOLD_STATE ; stay in current state
DEFAULT_BRANCH NEXT_STATE ;i go to next state in assignments

;i State assignments, value of the machine variables for each state.
; Gray code state assignments for a two-bit machine, S0-S3

SO = /Q1 * /Q0 ;i power-up state of Intel PLD Registers
SL = /Q1 * Q0
s2 = Q1 * QO
S3 = Q1 * /Q0

; Gray code state assignments for a three-bit machine, S0-s7

S0 = /Q2 * /Q1 * /QO0
S1 = /Q2 * /Q1 * QO
S2 = /Q2 * Q1 * QO
§3 = /Q2 * Q1L * /Q0
S4 = Q2 * Ql * /Qo0
S5 = Q2 * Q1 * QO
S6 = Q2 * /Ql * QO
S7 = Q2 * /Ql * /Q0

; Gray code state assignments for a four-bit machine, S0-SF

SO = /Q3 * /Q2 * /Q1 * /Q0 ; 0x0
S1 = /Q3 * /Q2 * /Q1 * Q0 ; Oxl
52 = /Q3 * /Q2 * Q1 * QO ; Ox3
S3 = /Q3 * /Q2 * Q1 * /Q0 ; O0x2
S4 = /Q3 * Q2 * Q1 * /Q0 ; O0x6
S5 =/Q3 * Q2 * Q1 * Q0 ; Ox7
S6 = /@3 * Q2 * /Q1 * Q0 ; 0xS
§7 = /Q3 * Q2 * /Q1 * /Q0 ; Ox4
S8 = Q3 * Q2 * /Q1 * /Q0 ; OxC
S9 = Q3 * Q2 * /Q1 * QO ; OxD
SA = Q3 * Q2 * Q1 * QO ; OxF
SB = Q3 * Q2 * Q1 * /Q0 ; OXE
SC = Q3 * /02 * Q1 * /Q0 ; OxA
SD = Q3 * /Q2 * Q1 * Q0 ; OxB
SE = Q3 * /Q2 * /Q1 * Q0 ; O0x9
SF = Q3 * /Q2 * /Q1 * /Q0 ; O0x8
; state transitions
S0 := vCC -> S1; on next clock go to Sl
Sl := UP -> 52
+ DOWN -> S4

A-6 PLDshell Plus/PLDasm User’s Guide

; output transitions, MOORE
; Moore outputs are default transitions (VCC) only

S1.0UTF := VvCC -> LOCAL * /MEMORY * /INTACK ; registered
S2.0QUTF = VCC -> ASTRB ; combinatorial
53.0UTF = VCC -> ASTRB

; output transitions, MEALY
; Mealy's may have conditions on the output transitions

S1.0UTF := DOWN -> LOCAL * /MEMORY * /INTACK ; registered
+ UP -> /LOCAL

S2.0UTF = UP -> ASTRB ; combinatorial

S3.0UTF = VCC - ASTRB

; input conditions that determine state and output transitions
CONDITIONS
up = UPDOWN * /CLEAR
DOWN = /UPDOWN * /CLEAR
ACTIVE = /EN + RDY

; Moore machines are level sensitive. The outputs do not change
; until the next clock edge. Mealy machines can generate pulse
; signals. The outputs may change before the next clock edge.

; See also the examples in exmealyl.pds and pulsel.pds.

; — Boolean Equations section -

EQUATIONS
ol = ... ; — Combinatorial Output (COMBINATORIAL)
ol := .. ; — Registered (D) Output (REGISTERED)
O1.FB ; — Feedback path from macrocell (REGFBK, CMBFBK)
01l.I0 ; — Feedback path from I/0 pin (PINFBK)
01.D : ; — Registered (D) Output (REGISTERED)
01.T ; — Toggle (T) Output
01.J ; — J/K Output (emulated J/K.
H synchronized with .CLKF)
0l1.K
ol.s ; — S/R Output (emulated J/K.
; Synchronized with .CLKF)
Ol.R :=
; — Control Signals -
01.CLKF = CLOCK ; Register clock signal
O1.ACLK = CLOCK * ENABLE ; Asynchronous clock signal,

; from pterm array
; See Chapter 7 in the PLDshell Plus Manual for specific
; device clocking options, and macrocell control signals.

O1.RSTF = CLEAR ; Register Clear signal
01.SETF = PRESET ; Register Preset signal
O1.TRST = /OE ; OE signal
; — Logic -
AND1= IN1 * IN2 ; Logical AND
/NAND1 = INLl * IN2 ; Logical NAND
OR1 = IN1 + IN2 ; Logical OR
/NOR1 = IN1 + IN2 ; Logical NOR
XOR1l= IN1 :+: IN2 ; Logical XOR
/XOR1 = IN1l :+: IN2 ; Logical XNOR
NOT = /IN1 ; Logical NOT

PLDshell Plus/PLLDasm User’s Guide

A-7

=
a
£
E
3
o
o
o
«
3
o
I3
]
-l

; — Truth Table section —

T_TAB ; combinatorial truth table
(I1 I2 I3 I4 >> Cl1 C2 C3 C4)

i1 0 0 0 : 1 0 0 O

0o 1 0 O 0 1 0 o0

0 0 1 0 0 0 1 0

0 0 o0 1 0 0 0 1

T_TAB ; registered truth table
(I1 12 13 I4 :> R1 R2 R3 R4)

1 0 0 O 1 0 0 O

01 0 o0 0 1 0 O

0o 0 1 o0 0o 0 1 0

0 0 0 1 0 0 0 1

; — Simulation section —
SIMULATION

; — Build vectors of outputs to use as tests for
;IF's and WHILE's

VECTOR INS = [IN8,IN7,IN6,INS, IN4, IN3, IN2, IN1, INO]
VECTOR NUM = [Q3, Q2, Q1, Q0]
VECTOR GLOB = [ADDR23, ADDR22, ADDR16, ADDR15, ADDR12]

; — Set all inputs to known values
; 0 0 1 0
SETF /CLKPIN /ILE Il /I2 /I3 INS:=0377

; — Preload registers to known a state (Intel PLD registers
; power-up to 0) NOTE: See PLDshell Plus Manual about preload
; for specific PLD's.

=
«
H E
£
E]
(7]
4]
o
-
3
o
c
L
=3

PRLDF /Q0 /Q1 /Q2 /Q3

; — Clock an input signal 0 -> 1 -> 0

CLOCKF CLKPIN

; — CHECK output values, report any mismatches
i 1 0 0 0 1 1

CHECK 01 /02 /03 /04 0S5 06

; — FOR loop to count up 6 clocks

FOR j := 0 TO 5 DO
BEGIN
SETF INS := j
CLOCKF CLK
IF (NUM == 4) ; when in state 4
BEGIN
SETF /OE ; disable OE
END

A-8 PLDshell Plus/PLDasm User’s Guide

Appendix B — Utilization Report

The Utilization Report shows which of a device's resources have been used by a partic-
ular design and how they have been used. If selected as a compile option, the report is
automatically stored and listed in the file directory as <filename>.RPT.

NOTE

If you specify all pin assignments in the design and the design fits,
there is no need to refer to this report. However, if some pin
assignments are unspecified or if there are fitting problems, refer to
this report to determine which pin assignments were selected by the
Fitter or to isolate fitting problems.

Utilization Report Sections

A Utilization Report contains: a header, a listing of the compiled source code, up to four
tables of fitting information, and device utilization statistics. The tables include:

¢ INPUTS
¢ OUTPUTS
¢ UNUSED RESOURCES

¢ MACROCELL INTERCONNECTION CROSS REFERENCE

-
4
]
a
]
o«
c
2
=
I
N
=
2

PLDshell Plus/PLDasm User’s Guide B-1

Header and Source Listing

The header information is the same as in the compiler source file as shown in Figure
B-1. The source code that was used by the compiler to produce the Utilization Report
follows the header information. Note that comments are not included and that all design
sections have been reduced to Boolean equation form. If minimization was selected
during compilation, equations are in their minimized form.

INTEL Logic Optimizing Compiler Utilization Report
FIT Release [Vx.y | SID [x.yyy |

*****x Degign implemented successfully

Title 4-Bit Counter Sample File
Pattern pds

Revision 1

Author Your Name

Company Your Company

Date Date

(SOURCE CODE OF COMPILED DESIGN)

Figure B-1. Report Header

Pin Connections

When a design is successfully implemented, the Utilization report contains a diagram o!
the device pinouts with signal names (see Figure B-2). Notes about pins may be presen
below the pinout diagram.

Inputs Table

-
S
o
Q.
(]

o«
e
]

2
T

o

.‘—=

2

The Inputs table indicates where each input is fitted and which resource was used. Fig
ure B-3 shows an Inputs table for a simple 4-bit counter.

If the input is fitted on an I/O pin, the Macrocell number (MCell #) is given and the
PTerms column contains a zero.

The resources column refers to the type of input. In the example, INP means Pin Inpu
to Logic Array.

B-2 PLDshell Plus/PLDasm User’s Guide

*****x Design implemented successfully

85C224
CLK -1 1 241~ Vce
ENA -] 2 231- Gnd
Gnd - 3 22]- Gnd
Gnd -1 4 211- Gnd
Gnd -| S 20|- Gnd
Gnd -1 6 191- Gnd
Gnd -1 7 181- QD
Gnd -| 8 171- QC
Gnd -1 9 161- QB

Gnd -110 151- QA
Gnd -111 141- Gnd
GND -112 131- Gnd

CMOS Device: ground unused inputs and I/Os.
Gnd = unused input or I/0 pin.

RESERVED = Leave pins unconnected on board.
N.C. = unconnected pin.

Figure B-2. Pinout Diagram

** INPUTS**
Name Pin Resource MCell PTerms
ENA 2 INP - -
CLK 1 INP - -
Figure B-3. Inputs Table
Outputs Table

The Outputs table shows where each output is fitted (see Figure B-4).

The Resource entry gives the name of the I/O primitive for the output signal. In the
example, RORF refers to D-Register pin Output, Register Feedback.

The MCell entry tells which macrocell the output is connected to.
The PTerm entry tells the number of product-terms used in the equation, and the number

available. For JK and SR flip-flop primitives, this is the total number of product-terms
for both equations.

PLDshell Plus/PLDasm User’s Guide B-3

-
=
[*]
o.
[
«c
c
S
2
aQ
N
=
=

**QUTPUTS* *
Name Pin Resource MCell PTerms

QA 15 RORF 8 1/ 8
QB 16 RORF 7 2/ 8
QC 17 RCORF 6 3/ 8
QD 18 RORF 5 4/ 8

Figure B-4. Outputs Table

Unused Resources

When a design does not use all the resources of a device, the Unused Resources Table is
generated. Figure B-5 shows the Unused Resources table for the 4-bit counter.

UNUSED RESOURCES

Name Pin Resource MCell PTerms
- 3 INPUT - -
- 4 INPUT - -
- 5 INPUT - -
- 6 INPUT - -
- 7 INPUT - -
- 8 INPUT - -
- 9 INPUT - -
- 10 INPUT - -
- 11 INPUT - -
= - 13 INPUT - -
‘ § - 14 INPUT - -
o - 19 MCELL 4 8
.8 - 20 MCELL 3 8
® - 21 MCELL 2 8
= - 22 MCELL 1 8
= - 23 INPUT - -

Figure B-5. Unused Resources Table

B—4 PLDshell Plus/PLDasm User’s Guide

Part Utilization

The Part Utilization Table shows the number and percentage of pins and macrocells, and
the percentage of product-terms fitted into the target device (see Figure B-6).

PART UTILIZATION
4/ 8 MacroCells (50%), 31% of used Pterms Filled
2/14 Input Pins (14%)

PTerms Used 15%

Figure B-6. Part Utilization

Macrocell Interconnection Cross Reference

This table shows each macrocell feedback or input interconnection. Figure B-7 shows
the macrocell interconnection table for the 4-bit counter example.

Feedbacks and inputs to the logic array are listed on the left side. Feedbacks show the
primitive used and the macrocell number preceded by an @ symbol. Inputs show the pin
number preceded by an @ symbol. Destination macrocells are listed on top with their
corresponding signal name on the bottom. The column on the right side shows the pins
associated with macrocells using pins used for outputs. Output pins are preceded by an
@ symbol.

An “x” at a column intersection indicates that no feedback signal is possible due to
device architecture (i.e., the feedback is a local feedback only). A period (.) at a column
intersection indicates that a connection is possible, but none has been implemented. An
asterisk (*) at a column intersection indicates that a feedback or input connection exists.
A question mark (?) indicates that a feedback or input connection was attempted where
none is possible on the target device.

-
=4
o
a
[

0@
c

2

=
T

N

=

=

PLDshell Plus/PLDasm User’s Guide B-5

Macrocell Interconnection Cross Reference 4COUNT.rpt
FEEDBACKS: MMMM
0000
56 78
QD RORF @M5 - =* . Q18
QC ... RORF @M6 - * * . . @17
QB RORF @M7 - > * * . @16
QA RORF @M8 - * * * x @15
INPUTS:
CLK INP @1 - * * * x
ENA INP @2 - * * * =
QQQQ
DCBA
. = not connected X = no connection possible
* = gignal feeds cell ? = error, unable to fit

Figure B-7. Part Utilization

)
=
o
(-3
o

4
c

o

=
[}

N

=

=

B-6 PLDshell Plus/PLDasm User’s Guide

Appendix C - PLDshell Configuration File

This section describes the PLDSHELL.CFG configuration file used by PLDshell
Plus/PLDasm. The configuration file is distributed with PLDshell Plus, and is copied to
the install directory during installation. Figure C-1 shows the full format of the configu-
ration file. If the defaults are used, many entries will not be present until changes are

made.

The following is a list of the supported variable assignments and a description of their

functions:

IPLSPATH

PARJKTERM

CMDSHELL

DEVPROG

EDITOR

Specifies directory path(s) to the PLDshell Plus and
associated files, which are usually in the same
directory.

Specifies directory path to DPP macro files.

Specifies the filename of the message database file.
PLDshell Plus messages are all contained in this file.

Specifies the name of the Master Parts File

Specifies the default serial port used by the APT
device programming software.

Specifies the optional, additional serial ports used by
the APT device programming software.

Specifies the macro libraries used during SMF/ADF
translation. The default entries are ‘“TTL.LIB’’ and
““EPLDMAC.LIB”".

Specifies the value which controls JK product term
optimization in the ADF parser. The larger the
number, the larger the equation the parser will accept
for processing (and the longer the processing will
take). Valid values are decimnal units (in p-terms)

Specifies the command shell program to run.
Specifies the programming software to use.
Text editor for PLDshell Plus. Default is the DOS

5.0 EDIT editor. Use the Utilities-Modify Options
menu.

PLDshell Plus/PLDasm User’s Guide C-1

HOTKEYS Allows selection of menus and submenus by using
the first letter of the menu name. The first letter is
highlighted. Default is ON. Use the Utilities-Modify
Options menu.

PRINTER Sets the printer port. The default is PRN. Use the
Utilities—Modify Options menu.

PDSEXT Sets the file extension for PDS files. The default is
“PDS”. Use the Utilities-Modify Options menu.

COMP_ERRFILE YES These are the Compiler Options, accessible through

COMP_RPTFILE YES the Compiler Options submenu. The default option is

COMP_EXPANDEQN YES shown with each option. Alternate entries for

COMP_MINIMIZE YES COMP_FITMODE are *“NO_ASSIGN’® and

COMP_AUTOINV YES *‘IGNORE_ASSIGN’".

COMP_FITMODE REASSIGN

SIM_ASYNC NO These are the Simulator Options, accessible through

SIM_THRESHOLD 32 the Simulation Options submenu. The default is
shown with each option.

WAVE_PGLEN 66 These are the View Options, accessible through the

WAVE_VIEW GRAHPICAL View menu. The default is shown with each option.

WAVE_PRINT PLAIN The alternate enuwry for WAVE_VIEW is

“STATETABLE”. The altemate entry for
WAVE_PRINT is ‘‘EXTENDED"’.

PROGA-PROGX These are the Run menu program fields, accessible
through the Run menu.

C-2 PLDshell Plus/PLDasm User’s Guide

#

PLDSHELL PLUS System Configuration File

#

#

IPLSPATH D:\\PLDSHELL\\

INCLUDE D:\\PLDSHELL\\

PLD_MSG PLDSHELL.MSG

MPFFILE PLDASM

PORT1 COM3_PCPP 9600 5 3 30000

PORT2 COM1_IUP 9600 5 3 30000

PORT3 COM2_IUP 9600 5 3 30000

PORT4 COM3_IUP 9600 S 3 30000

PLD_MLIB EPLDMAC.LIB TTL.LIB

PARJKPTERM 500

CMDSHELL C:\\COMMAND.COM

DEVPROG C:\\PLDSHELL\\APT

EDITOR EDIT tiaa. H H
HOTKEYS ON Utilities-Modify Options
PRINTER PRN
PDSEXT pds
COMP_ERRFILE YES
COMP_RPTFILE YES
COMP_EXPANDEQN YES
COMP_MINIMIZE YES
COMP_AUTOINV YES
COMP_FITMODE REASSIGN

SIM_ASYNC NO A :
SIM_THRESHOLD 32 T Simulation Options

WAVE_PGLEN 66
WAVE_VIEW GRAPHICA }——— View Options
WAVE_PRINT PLAIN

PROGA * * b N
PROGB *
PROGC
PROGD
PROGE
PROGF
PROGG
PROGH
PROGI
PROGJ
PROGK
PROGL
PROGM
PROGN *
PROGO *
PROGP *
PROGQ
PROGR
PROGS
PROGT
PROGU
PROGV
PROGW
PROGX

Compiler Options

~
-
»
”
»
"
»
»

r e oo n

P)
T SN S S ST

Y

Run Menu Items

2 o oxox ox o
0
D N N T T T Y

R R R S L R B Y

®
x
.

T v or oA
B
a

x v oa o oxoxoxon
0

Configuratio

Figure C-1. PLDshell Plus Configuration File Listing

PLDshell Plus/PLDasm User’s Guide C-3

C—4 PLDshell Plus/PLDasm User’s Guide

Appendix D - Command Line Interface

The following PLDshell/PLDasm program functions can be directly accessed from DOS:
Compiler
Disassembler
Conversion
Translation

This appendix describes the PLDasm command line interface for these functions.

Command Line Interface

The PLDasm command line syntax is
pldasm action [options] files

where action is one of the following:

COM(PILE]
D[ISASSEMBLE]
CONI[VERT]
T[RANSLATE]

The minimum number of characters for each action is that which identifies it as a
unique action (i.e., “D” for Disassemble, “CON” for Convert, etc.).

o
£
p}
°

c

a

£

13

O .
o

PLDshell Plus/PLDasm User’s Guide D-1

Compile Commands and Options

To compile a PDS file from the DOS command line use the command syntax:

pldasm com [options] filename

where the compiler options are:

Table D-1. Command Line Compiler Options

Option Default Description
+/- comp + Compiler On/Off
+/—- sim + Simulation On/Off
+/- min + Espresso-IImv equation minimizer On/Off
+/— demor - Output polarity control On/Off — automatic
DeMorganization
+/- xpand + Two-level logic expansion On/Off
+/- error + Error log file creation On/Off
+/— report + Fitter report file creation On/Off
+/— async - Show asynchronous events during simulation On/Off
+ thres n 32 Number of asynchronous events, where n is a decimal
number in the range of 0 to 32,767
—fit 0 X Fail if any assigned pins will not fit
~fit 1 Use pin assignments, but reassign if necessary
~fit 2 Ignore all pin assignments in file
-infile (optional) | Input filename
Where “+” = On and “~" = Off

-]
£
38
b=}
£<
EZ
[
<3
o

D-2 PLDshell Plus/PLDasm User’s Guide

Compilation Examples

The following are examples of compiler operation from the DOS command line:
pldasm comp -sim -min 4count.pds

where simulation and the minimizer are both tummed off. No simulation file will be
created and p-term minimization will not be performed.

pldasm comp -comp +async +thres 55 count.pds

where compilation is turned off, and a maximum of 55 asynchronous events will be
permitted/shown during each simulation step.

(-]
£
3
°

c

]

£

£
<]
(¥

PLDshell Plus/PLDasm User’s Guide D-3

Disassembler Commands and Options

To disassemble a JEDEC file from the DOS command line, use the following command
syntax:

pldasm dis <part> <package> file

where:
<part> is any valid part recognized by PLDasm.
<package> is any valid package type: DIP, PLCC, PGA.

file is a JEDEC input file. The output file is the target Intel device name with a
JED extension.

Disassembly Example

pldasm DIS 16V8 PLCC UDCTR.JED

where the <part> is a 16V8 in a PLCC package. The input file is UDCTR.JED. Note
that the 16V8 JEDEC file will be disassembled into a PDS file for the respective Intel
WPLD. The output filename is 85C220.PDS. Table 7-1 lists all supported PLDs.

o
s
k=4
o
2
£

D—4 PLDshell Plus/PLDasm User’s Guide

)
£
3
o
c
@
E
E
]
(3]

Conversion Commands and Options

Convert disassembles a JEDEC file for a PAL device, producing a PDS file, which is
then compiled to a JEDEC file for an Intel uPLD. To convert a JEDEC file, use the
following command syntax:

pldasm CONV <part> <package> [options] file
where:

<part> is any valid part recognized by PLDasm.

<package> is any valid package type: DIP, PLCC, PGA.

file is a JEDEC input file. The output file is the target Intel device with a JED
extension.

Conversion Examples

pldasm CONV 20L8 DIP UDCNTR.JED

where <part> is a 20L8 in a DIP package. The output file is 85C224.JED for an Intel

nart
Part.

pldasm CONV 20L8 DIP +min UDCTR.JED

where <part> is a 20L8 in a DIP package. The compiler minimizer is turned on. The
output file is 85C224 JED for an Intel part. Table 7-1 lists all supported PLDs.

o
£
par g
T 3
I3
]
E
£
o
o

PLDshell Plus/PLDasm User’s Guide D-5

Translation Commands and Options

Translate produces a PDS source file from input files in another PLD language
(ADF/SMF files). To use the translate command from the DOS command line, use the
following syntax:

pldasm TRAN [-i file.in] [-o file.out]
where:
-i file.in is the input filename (optional)

-0 file.out is the output filename (optional)

Translation Examples

pldasm TRAN COUNTER.ADF
where the input file COUNTER.ADF is translated into output file CONVERT.PDS

pldasm TRAN -i COUNTER.ADF -0 NEWCTR.PDS

where the input file COUNTER.ADF is transiated into output file NEWCTR.P.

S.

Q
&
=
T
£<
EZ
£E=
o
(3]

D—-6 PLDshell Plus/PLDasm User’s Guide

Appendix E — APT Description

Overview of APT

APT (Advanced Programming Tool) is a software package that allows you to program,
read, and verify Intel pPLDs (Erasable Programmable Logic Devices) from a JEDEC
file. APT programs devices using the iUP-PC (Universal Programmer Personal Com-
puter) or the iUP-200A/201A Universal Programmers. Both programmers rely on the
iUP-GUPI Module Base and programming adaptors. Programming adaptors typically
support a family of devices or a specific device in multiple packages. Refer to the Mi-
crocomputer Programmable Logic Handbook for information on Intel pPLDs. Table E-1
shows Intel uPLD programming support.

Table E-1. PLD Programming Support

Device iUP-GUPI Adapter Package Type
Supported
iPLD22V10 .
85C22V10 GUPI LOGIC-V10 24-Pin DIP & 28-PLCC
iPLD610 . *
85C060 GUPI LOGIC-IID 24-Pin DIP
iPLD910 . "
85C090 GUPI LOGIC-IID 40-Pin DIP
5C031, EP310 GUPI 20D20J 20-Pin DIP
5C032, EP320 GUPI 20D20J 20-Pin DIP
85C220 GUPI 20D20J 20-Pin DIP & PLCC
85C224 GUPI 28D28]J 24-Pin DIP & 28-Pin PLCC
5C060, EP600 GUPI LOGIC-IID 24-Pin DIP
5C090, EP900 GUPI LOGIC-IID 40-Pin DIP
5C180, EP1800 GUPI LOGIC-18 68-Pin PLCC
5C180PGA GUPI LOGIC-18PGA 68-Pin PGA

APT is operated via a command-line interface. Once invoked, you can perform one of
the following operations with a simple command:

e Check for blank device

¢ Program device from JEDEC file

PLDshell Plus/PLDasm User’s Guide E-1

* Read device to JEDEC file

* Verify device against JEDEC file

c
2
=
=3
=
]
@
)
[=]
=
a
<.

¢ Compute checksum on file

¢ Change defaults
* Quit

Sample Session: Programming a 85C224 uPLD

This section of the appendix gets you up and running with APT in a short time. Refer to
the following sections of this appendix for detailed information on using APT.

The sample session provided here uses a file called 4COUNTJED. This file is easily
created by compiling 4COUNT.PDS using PLDasm. 4COUNT.PDS is shipped with
PLDasm. The following programming hardware is required to work through the sample
session:

* PCPP or iUP-200A/201A Universal Programmer
* iUP-GUPI Module base

¢ GUPI 24D28]J Programming Adaptor

¢ Blank 85C224 uPLD

If the programming hardware and device are not available, you can still learn a lot about
APT by carefully reading through the sample session.

Make sure that APT and the programming hardware are installed, then proceed as fol-
lows:

STEP 1: Invoke APT

APT is invoked from the PLDshell Plus Program Menu as shown below. Position the
cursor on Program and press <Enter> or press <P> for Program. You can also invoke
APT from the install directory by typing

APT <Enter>

E-2 PLDshell Plus/PLDasm User’s Guide

In either case, the following will be displayed on the screen:

APT Release [x.y] SID [info.]
Copyright Intel Corporation, <dates>
Welcome to APT

File 'apt.cfg’ Does Not Exist, Create? Y/N [Yly]: <Enter>

APT>> h
The help command provides a quick reference to APT commands.
Usage:
?1h[elp] [command] where command is one of the following:
b[lankcheck]
c[hecksum]
dlefaults]
rlead]
pfrogram]
v[erify}
q[uit]
"\’ to Escape

The prompt for APT is as follows:

APT>>

PLDshell Plus/PLDasm User’s Guide E-3

STEP 2: Display Session Defaults

Enter the DEFAULTS command to display all session defaults:

s
28
=
-3
=
Q
3
o
[=]
[
a.
<<

DEFAULTS <Enter>
Current Defaults for File 'apt.cfg’ are:

DESIGNER:

COMPANY:

DATE:

NUMBER:

REVISION:

EPLD:

COMMENT:
JEDEC file currently in memory = <none>.jed
Device name = <none>
Intel Part name = <none>
Communication Port = PORT1
XOR Map File = <none>.xor
Save Log Messages = YES
Repeat Count = 1000

STEP 3: Change Defaults
Enter the DEFAULTS command to change the port number to ‘‘Port 3’ :

DEFAULTS - PORT3 <Enter>
Current Defaults for File "apt.ctg’ are:

DESIGNER:

COMPANY:

DATE:

NUMBER:

REVISION:

EPLD:

COMMENT:
JEDEC file currently in memory = <none>.jed
Device name = <none>
Intel Part name = <none>
Communication Port = PORT3
XOR Map File = <none>.xor
Save Log Messages = YES
Repeat Count = 1000

E-4 PLDshell Plus/PLDasm User’s Guide

STEP 4: Insert the Device and Execute BLANKCHECK

Insert the 85C224 into the 24-pin DIP socket on the 24D28J Adaptor. Secure the device
with the lever. Enter the BLANKCHECK command as shown below. Note that since
this is the first time that the programmer is accessed since invocation, APT initializes
the programmer before executing the blankcheck. Also, since no device-specific soft-
ware (.DSS) files have previously been loaded, the 35C224.DSS file is also loaded.

BLANKCHECK -D 85C224 <Enter>

Initializing Serial Port COM3_PCPP

Initializing Device 85¢224

Initializing PCPP

PCPP Version: PCPP EPROM Loader V1.0, 08-05-86, 14:25
Copyright Intel Corporation, 1986

Running Diagnostics on PCPP

Downloading ‘c:\iplsii\pcpp85.0bj’

Downloading 'c:\iplsi\85c224.dss’

Building Physical Data Base for 85c224

Insert the 85c224 device and press return to continue or '\' to Escape: <Enter>
Device is Blank

Insert the 85¢224 device and press return to continue or \' to Escape: \ <Enter>

Use a backslash (\) followed by <Enter> to exit the blankcheck loop (repeat count is set
to loop for 1,000 devices).

PLDshell Plus/PLDasm User’s Guide E-5

STEP 5: Program Device

Program the device using 4COUNT.JED and using the defaults for all other options:

I3
K]
s
=

o

@

)
[=1
[
(-
<

PROGRAM 4COUNT.JED <Enter>

Reading JEDEC Fuse Data from '4COUNT.jed’ at address XXXX
Computed fusesum = YYYYH, file fusesum = 2ZZZZH
Computed filesum = YYYYH, file filesum = ZZZZH

Finished Reading JEDEC file '4COUNT .jed'.
Turbo is ON
Verify Protect is OFF

Insert the 85c224 device and press return to continue or '\’ to Escape: <Enters
Programming Device Address XXXXH - YYYYH

Programming Completed

Verifying Device

Verifying Device Address XXXXH - YYYYH

Finished Verifying Device, Errors = 0

Insert the 85¢224 device and press return to continue or '\’ to Escape: \ <Enter>

Use a backslash (\) followed by <Enter> to exit the program loop (repeat count is set tc
loop for 1,000 devices).

E-6 PLDshell Plus/PLDasm User’s Guide

Compile/Sim Menu

Figure 3-3 shows the Compile/Sim menu. Use this menu to compile and/or simulate a
logic design.

(= ™

INTEL’s PLDshell Plus [Ux.y 1 SID [Ux.y 1
Conpile Source to JEDEC File/Sirmulate a Design F1> for Help
Edit CompilesSin VUiew Program Run Utilities Databook Quit

Source Filename : ».FDS.:

Processing . ¢ Campile Then Simulate

Conpile Options Simnulation Options

SC Cancels F18 Accepts SPACE Lists g

Figure 3-3. PLDshell Plus Compile/Sim Menu

Source Filename — Displays the filename of the source file to be compiled
and/or simulated. The initial default is *.PDS. A source file with an extension
other than .PDS can be used. If no files are in the current directory, an error
message will be displayed. See the Utilities Menu to change the current directory
or the default filename extension.

Processing — Press the <SPACE> key to see a list of the three processing op-
tions:

Compile Then Simulate
Compile Oniy
Simulate Only

Compile Then Simulate (the default) parses in the file, minimizes equa-
tions (if selected), simulates the design (if a simulation section is present),
fits the design to the device resources, and generates a JEDEC program-
ming file. Test vectors (if any) are placed in the JEDEC file based on the
simulation vectors.

PLDshell Plus/PLDasm User’s Guide 3-5

[3
8
=
a

=

7]

]

Q
[=}
=
Q..

<

STEP 8: Exit to PLDshell Plus

Execute the QUIT command to exit to the OS/command shell:

QUIT <Enter>
EXITING APT

APT Files

As shown in Figure E-1, APT accepts a JED file, a .JPM file, and a .CFG file as input
and outputs two optional files: a .LOG file and a .XOR file. One additional file, a .DSS
file is required for each device type. The following list describes each of these files:

JED (JEDEC,) files are typically produced using Intel’s PLDasm compiler, which is
included in PLDshell Plus. Other programs may also be used to create the JEDEC
file.

JPM (JEDEC to Physical Map) files for each device contain the information for
mapping the JEDEC addresses into the physical row and column locations for the
specified device. The proper JPM is required for programming, reading, or verifying
devices. These files are provided with APT and are maintained by Intel.

A CFG file (Defaults Configuration File) contains session defaults that define the
default programming conditions. The .CFG file is read at invocation to automatically
set session variables.

.LOG files are generated by APT under user control. These files contain all user
messages and commands, including error messages. Error message help information
is available on-line in PLDshell Plus. Use the View Error/Log File menu options,
move to the error message, and press <F10> to obtain this help information.

XOR files are generated by APT under user control. An .XOR (Exclusive-OR) file
contains the mismatched device/JEDEC file data and addresses from a Verify
operation (if any mismatches are detected). The user is prompted to save the
mismatched data in an .XOR file.

.DSS (device-specific software) files, shipped with the GUPI adaptors, contain
device-specific programming algorithms and tables. These files are required to
program Intel uPLDs and are maintained by Intel.

APT can be invoked directly from the Operating System or PLDshell Plus to program,
read, and verify Intel {PLDs. This section describes APT invocation, general interface
conventions, error message, and filename conventions.

E-8 PLDshell Plus/PLDasm User’s Guide

APT Error Messages

APT displays error messages when invalid conditions are detected. Warning messages
are displayed when potentially harmful situations are detected (e.g., overwriting infor-
mation, etc.). Error and warning messages are numbered, and are formatted as follows:

ERRCR E586-APT: Unrecognized APT command, try again.

Error message belp information is available on-line in PLDshell Plus. Use the View
Error/Log File menu options, move to the error message, and press <F10> to obtain this
help information. The help information describes the probable causes for each message,
and recommended action to correct the error condition.

Filename Conventions

APT filenames follow the conventions appropriate for the respective operating system as
far as pathnames, character length, upper/lower case distinction, etc. The same exten-
sions, however, are followed across all platforms/operating systems:

JED JEDEC programming file

LOG Session log file (all message and user entries)

XOR Exclusive-OR file (results of Verify)

.CFG Defaults Configuration File

DSS Device-Specific Software file (programming algorithms and
parameters)

JPM JEDEC to Physical Map file

PLDshell Plus/PLDasm User’s Guide E-11

e]
S
2
23
2
Q
0
2 7
(=09
—
a.
<

APT Commands

c
2
=

~

o

3

Q
[=]
-
a
<

This section presents all commands in alphabetical order, with each command section
containing a discussion of the command, and showing syntax, abbreviated form, and
examples. Table E-1 lists and summarizes all APT commands and arguments.

Command Arguments

The following list shows all APT command options and arguments and describes their
use. Each command accepts a different subset of arguments. Some commands do not
accept any arguments.

jedfile JEDEC programming file. Contains the bit-image used to program
devices. Ends with a JED extension.

file Defaults Configuration File. Contains default names and option values
used during programming. Ends with a .CFG extension.

-C port# Specify serial communication port in the system configuration file.
Used to change the serial port for the current session. ‘‘port’” is a
keyword and may not be abbreviated. # is a decimal number from 1
to 8.

-d device Specify device name. The name must be a valid Intel uPLD part name
(i.e., iPLD610, SAC324, iPLD22V 10, 85C508, 85C22V 10, etc.).

11+ Save/Don’t Save log File. A +1 (or +L) instructs APT to save all
messages and user commands in an ASCII file named apt.LOG. -1 (or
-L) tumns the save option off. When specified on the command line,
this option overrides/updates the session default loaded from the .CFG
file. The name of the log file is the same as the JEDEC filename with
a .LOG extension.

-pl+p Set/Clear Security Bit (Verify Protect Bit). A +p (or +P) sets the
Security Bit during programming to prevent subsequent device reads.
A -p (or -P) keeps the Security Bit cleared during programming to
allow subsequent device reads. When specified on the command line,
this option overrides the value in the JEDEC file.

-r count Set repeat count value. Sets the number of times subsequent APT
commands are looped. Useful for programming several devices in a
row. The count field is a decimal number from 1 to 1,000. The default
is 1,000.

E-12 PLDshell Plus/PLDasm User’s Guide

-+t Set/Clear Turbo Bit. A+t (+T) sets the Turbo Bit during
programming (TURBO=0N) to allow the device to run at full speed
(no power-down). A -t (-T) keeps the Turbo Bit cleared during
programming (TURBO=OFF) to allow the device to enter standby
mode between input transitions.

E-2. APT Command Summary

Command Arguments Description
BLANKCHECK -d device Checks for blank device
-r_count
CHECKSUM jedfile Computes checksums
from JEDEC file.
DEFAULTS file Displays/changes
-d device defaults configuration
- port# (.CFGQ) file and/or
+ 1l session defaults.
-r_count
EXIT Exits to operating
system/shell
HELP or ? Displays help

information for
specified command.

PROGRAM jedfile Programs device from
-d device JEDEC file.
-c port#
-r count
+p | -p
+ | -t
QuUIT Exits to operating
system/shell
READ jedfile Reads device contents
-d device to JEDEC file.
-C_pont#
VERIFY jedfile Compares device
-d device contents agains
-c port# JEDEC file.
-r_count
\ Escapes from current
context back to APT
prompt.
CtriC “Ctrl + C” terminates all

processing and returns
control to operating
systenvshell.

PLDshell Plus/PLDasm User’s Guide E-13

BLANKCHECK
Check for blank/erased device(s)

I3
8
=
2

=

5]

@

o
[=)
-
a.
<

Syntax
BLANKCHECK [options]

Abbreviated Form

B ... BLANKCHECK

Discussion

This command checks to see if the specified device is blank (EPROM cells in erased
state). The command returns a ‘‘Device is Blank’’ or ‘‘Device is Not Blank’® message
depending on the state of the device. If no device is specified in the command line and
no session default has been previously specified, the user is prompted for the name of a
device. The specified device must be properly inserted in the socket on the programming
adaptor before executing this command. The command can be repeated by specifying a
count value on the command line. The default count is used if no count value is speci-
fied. Valid options are as follows:

-d device specify device

-r count count times
Note that for some devices, the blank/erased state is all zeros while for other devices it
is all ones. APT uses the proper value for the specified device.

Examples
1. Use full form of command:

BLANKCHECK -d 5AC324 <Enter>

Insert the 5ac324 device and press return to continue or '\’ to Escape: <Enter>
Device is Blank

Insert the 5ac324 device and press return to continue or \' to Escape: \ <Enter>

2. Use abbreviated form and specify count value on command line:

NK -d 85C508 -1 2 <En

e 85¢508 device and

Device is Blank

Insert the 85¢508 device and press return to continue or '\’ to Escape: <Enter>
Device is Blank

T
ress return to continue or '\' to Escape: <Enter>

3
73
(]
=4
-
>

E-14 PLDshell Plus/PLDasm User’s Guide

Use abbreviated form with no device on command line:

BL <Enter>
lllegal or Unspecified Device.
Enter a Default type or \' to Escape: 85C224 <Enter>

Insert the 85¢224 device and press return to continue or '\’ to Escape: <Enter>
Device is Blank

Insert the 85c224 device and press return to continue or \' to Escape: \ <Enter>

PLDshell Plus/PLDasm User’s Guide E-15

CHECKSUM

Generates checksums for JEDEC file

c
S
=
o
5]
3
Q
a
-
o
<

Syntax
CHECKSUM [jedfile |

Abbreviated Form

C ... CHECKSUM

Discussion

This command reads the specified JEDEC file and generates transmission checksums on
the bytes in the file and in the fuse section. Both the computed checksum and the
checksum in the JEDEC file are displayed for the fuse section and the file. If either
checksum has changed, you are prompted whether or not to update the JEDEC file with
the computed checksum. If the JEDEC filename is not specified on the command line
and no JEDEC file is currently in memory, the user is prompted for the filename. This
command does not load the JEDEC file into program memory; therefore, the JEDEC
filename in the session defaults is not updated.

Examples

1. Specify filename on command line:
CHECKSUM MYPROGRM.JED <Enter>
Finished Reading JEDEC file ‘'myprogrm’.

Computed fusesum = YYYYH, file fusesum = ZZZZH
Computed filesum = YYYYH, file filesum = ZZZZH

2. Use abbreviated command and specify filename on command line:
C NEWPROGR.JED <Enter>
Finished Reading JEDEC file 'newprogr’.

Computed fusesum = YYYYH, file fusesum = ZZZZH
Computed filesum = YYYYH, file filesum = ZZZZH

E-16 PLDshell Plus/PLDasm User’s Guide

Use abbreviated form and prompt for filename (checksum does not match file):

CHECK <Enter>
Please Enter a JEDEC File Name (no .jed extension):
NEWPROGR <Enter>

Finished Reading JEDEC file 'newprogr'.

Computed fusesum = YYYYH, file fusesum = ZZZZH

Computed filesum = YYYYH, file filesum = ZZZZH

Computed Checksum does not match filesum, update? Y/N [Yly] Y <Enter>
Checksum(s) for file 'newprogr’ have been updated.

Computed checksums(s) not equal to filesum(s), update file? Y/N [NIin] Y<Enter>

PLDshell Plus/PLDasm User’s Guide E-17

DEFAULTS

c
2
=
[N
=
S
iy
[
[=]
—
Q.
-3

Display/change session defaults/defaults configuration file

Syntax
DEFAULTS [file] [options]
Abbreviated Form

D ... DEFAULTS

Discussion

When entered with a filename only, this command reads the specified Defaults Configu-
ration File and displays the current set of defaults. If the specified file is not found, APT
prompts you to create it and to supply default values.

If no filename is specified on the command line, the .CFG file previously used is
loaded. If no previous file was loaded, the default file (APT.CFG) is used.

If APT.CFG is not present, you are prompted to create it and to supply default values.
When entered with options, the session defaults are updated. When you exit APT after

changing the communications port or log file status, you are prompted to write these
values to the Defaults Configuration File. Valid options are as follows:

-d device override default device (not written to Defaults Configuration File)
-c port# serial communication port # (1 to 8)
+1-1 save (+) or don’t save (-) Log File
-r count repeat command count times (not written to Defaults Configuration
File)
NOTES

Default Configuration Files contain more information than can be

changed by editing the file with a standard ASCII text editor. Refer to
*‘Defaults Configuration File’’ for details.

Session defaults for device name can be changed via the DEFAULTS command, but this
name is not stored in a Defaults Configuration File. Device names are automatically
updated whenever a valid PART: field is read from a JEDEC file.

E-18 PLDshell Plus/PLDasm User’s Guide

Examples

1. Display current defaults:

e
x-]
-
a
=
G
w
o 4
o 4
g
a.

D <Enter>
Current Defaults for File 'apt.cfg’ are:

DESIGNER: Your Name

COMPANY: Your Company

DATE: Current Date

NUMBER: Final Eng. Part No.

REVISION: 1.0

EPLD: 85C224

COMMENT: This is a comment to help document the design. It can span more than

one line.

JEDEC file currently in memory = <none>.jed
Device name = <none>
Intel Part name = <none>
Communication Port = PORT3
XOR Map File = <none>.xor
Save Log Messages = YES
Repeat Count = 1000

Change file to disable logging of session messages/commands:

D -L <Enter>
Current Defaults for File 'apt.cfg’ are:

DESIGNER: Your Name

COMPANY: Your Company

DATE: Current Date

NUMBER: Final Eng. Part No.

REVISION: 1.0

EPLD: 85C224

COMMENT: This is a comment to help document the design. It can span more than
one line.

JEDEC file currently in memory = <none>.jed
Device name = <none>
Intel Part name = <none>
Communication Port = PORT3
XOR Map Fils = <nhone>.xor
Save Log Messages = NO

Repeat Count = 1000

PLDshell Plus/PLDasm User’s Guide E-19

EXIT

Exit APT and return to operating system or shell

e
2
=

.
=

Q

o

]
[=}
-
a.
<

Syntax

EXIT

Abbreviated Form
E ...EXIT or X

Discussion

This command exits APT and returns to the operating system or shell. Temporary files
are deleted and open files are closed. (See also: QUIT).

Examples
1. Use full form:

EXIT <Enter>
EXITING APT

2. Use abbreviated form:

E <Enter>
EXITING APT

3. Exit after stored defaults have been changed, saving the new defaults:

X <Enter>
EXITING APT

Defaults Have Been Modified, Save as 'apt.cfg’? Y/N [Yly]: y <Enter>
File 'apt.cfg’ has been updated.

E-20 PLDshell Plus/PLDasm User’s Guide

HELP
Display help information for commands
Syntax

HELP [command]

Abbreviated Form
H ... HELP or ?
Discussion
Displays a brief description of the specified command, including usage.
Examples

1. Use the full form to get help on program command:

HELP P <Enter>
The program command programs a device from data in a JEDEC file.
Usage:

p [program] [jedfile] [-d device] [-c port#] [+t1-t][+p|-p][-r count]
2. Use abbreviated form to list all commands:

H <Enter>
The help command provides a quick reference to APT
commands.
Usage:

71 hlelp] {command] where command is one of the following:
b{lankcheck]
c[hecksum]
d[efaults]
rlead]
p[rogram]
v{erify]
q{uit]
'\' to Escape

PLDshell Plus/PLLDasm User’s Guide E-21

PROGRAM

Program device from JEDEC file

c
2
=
2

=

Q

o

]
a
[
a-
<

Syntax

PROGRAM [jedfile] [options]
Abbreviated Form

P ... PROGRAM
Discussion

This command reads the specified JEDEC file and programs the specified device. If a
JEDEC file and/or device are not specified on the command line, APT uses the session
defaults. If no session defaults are currently in memory, APT prompts you for them.

Valid options are as follows:

-d device specify device

-c port# serial communication port # (1-8)

-r count repeat command count times

+pl-p set (+) or don’t set (-) Verify Protect Bit
+t |-t set (+) or don’t set (-) Turbo Bit
Examples

1. Program a 85C224 immediately after invocation, specifying JEDEC file and using
defaults for other options:

PROGRAM 4COUNT.JED +t -p <Enter>

Initializing Serial Port COM3_PCPP

Initializing Device 85¢c224

Initializing PCPP

PCPP Version: PCPP EPROM Loader <version information>
Copyright Intel Corporation, 1986

Running Diagnostics on PCPP

Downloading ‘c:\iplsii\pcpp85.obj’

Downloading 'c:\iplsil\85c224.dss’

Building Physical Data Base for 85¢224

Reading JEDEC Fuse Data from '4COUNT .jed’ at address XXXX
Computed fusesum = YYYYH, file fusesum = ZZZZH
Computed filesum = YYYYH, file filesum = ZZZZH

Finished Reading JEDEC file '4COUNT jed'.

E-22 PLDshell Plus/PLDasm User’s Guide

Turbo is ON
Verify Protect is OFF

Insert the 85c224 device and press return to continue or 'V to Escape: <Enter>

Programming Device Address XXXXH - YYYYH
Programming Completed

Verifying Device

Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0

Insert the 85¢224 device and press return to continue or '\’ to Escape: \ <Enter>

Program a 5AC324 as part of a sequence of several identical devices (JEDEC file
is already loaded and one SAC324 has already been programmed with +t and +p).

P <Enter>
Turbo is ON
Verify Protect is ON

Insert the 5ac324 device and press return to continue or '\’ to Escape: <Enter>

Programming Device Address XXXXH - YYYYH
Programming Completed
Verifying Device
Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0
Locking Device

Device is Locked

Insert the 5ac324 device and press return to continue or '\’ to Escape: \ <Enter>

PLDshell Plus/PLDasm User’s Guide E-23

3. Program three 85C508s after a 85C224 device has been programmed:

PROGRAM -D 85C508 SAMP3 -R 3 +P -T <Enter>
Downloading ‘c:\iplsi\85c508.dss’
Building Physical Data Base for 85c508
Reading JEDEC Fuse Data from 'SAMP3.jed’ at address XXXX
Computed fusesum = YYYYH, file fusesum = ZZZZH
Computed filesum = YYYYH, file filesum = 2ZZZZH
Finished Reading JEDEC file 'SAMP3.jed’.

Turbo is OFF

Verify Protect is ON

c
2
=
2

=

Q

"3

Q
[=]
[
a
<<

Insert the 85¢c508 device and press return to continue or '\’ to Escape: <Enter>

Programming Device Address XXXXH - YYYYH
Programming Completed
Verifying Device
Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0
Locking Device

Device is Locked

Insert the 85¢c508 device and press return to continue or '\' to Escape: <Enter>

Programming Device Address XXXXH - YYYYH
Programming Completed
Verifying Device
Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0
Locking Device

Device is Locked

Insert the 85c508 device and press return to continue or '\’ to Escape: <Enter>

Programming Device Address XXXXH - YYYYH
Programming Completed
Verifying Device
Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0
Locking Device

Device is Locked

Insert the 85¢508 device and press return to continue or \' to Escape: \ <Enter>

E-24 PLDshell Plus/PLDasm User’s Guide

QuIT

Exit APT and return to operating system or shell

Syntax

QUIT

Abbreviated Form

Q ...QUIT or X

Discussion

This command exits APT and returns to the operating system or shell. Temporary files
are deleted and open files are closed.

Examples

L.

Use full form:

QUIT <Enter>
EXITING APT

Use abbreviated form:

Q <Enter>
EXITING APT

Quit after stored defaults have been changed, saving the new defaults:

X <Enter>

EXITING APT

Defaults Have Been Modified, Save as 'apt.cfg’? Y/N [Yly]: y <Enter>
File "apt.cfg’ has been updated.

PLDshell Plus/PLDasm User’s Guide E-25

READ

=
2
=
o
=
Q
0
Q
[=]
I
a
<

Reads contents of device and stores in JEDEC file

Syntax
READ [jedfile] [options]
Abbreviated Form
R ... READ
Discussion
This command reads the specified device and stores the contents in a JEDEC file. If a
device is not specified on the command line, APT uses the previously specified session

default. If a default has not been entered, the user is prompted for a device name. If a
JEDEC file is not specified, the user is prompted for a filename.

Valid options are as follows:

-d device specify device
-c port# serial communication port# (1-8)
Examples

1. Read device and store in JEDEC file.

READ -d 85C224 <Enter>
Enter a JEDEC File Name or \' to Escape:
READSAMP.JED <Enter>

Insert the 85¢224 device and press return to continue or '\ to Escape: <Enter>

Reading Device Address XXXXH - YYYYH
Finished Reading Device
Turbo is ON
Writing JEDEC Fuse Data into 'READSAMP.jed’ at address XXXX
Finished Writing JEDEC file'READSAMP jed'.

E-26 PLDshell Plus/PLDasm User’s Guide

2. Read device, specifying device and filename on command line:

R NEWSAMP -d 5AC324 <Enter>

Insert the 5ac324 device and press return to continue or '\' to Escape: <Enter>

Reading Device Address XXXXH - YYYYH
Finished Reading Device
Turbo is ON
Writing JEDEC Fuse Data into "/READSAMP.jed’ at address XXXX
Finished Writing JEDEC file 'NEWSAMP .jed’.

PLDshell Plus/PLDasm User’s Guide E-27

VERIFY

Read contents of device and compare against JEDEC file

s
g
=

Q.
=

o

o

O
[=]
[
a.
<

Syntax
VERIFY [jedfile] [options]
Abbreviated Form

V ... VERIFY

Discussion

This command reads the specified device and compares the device contents with the
specified JEDEC file. If a device and/or JEDEC file are not specified on the command
line, APT uses the session defaults. If defaults are not found there, the user is prompted
for this information. If the data read from the device does not match the programming
image in the JEDEC file, a message is displayed and the user is prompted to store the
differences in a file. This file, which is identified by a .XOR extension, is the Exclusive-
OR of the comparison.

Valid options are as follows:

-d device specify device
-C port# serial communication port # (valid numbers are 1-3)
-r count repeat command count times

E-28 PLDshell Plus/PLDasm User’s Guide

Examples

1.

Verify a device using the default values:

VERIFY <Enter>
Enter a JEDEC File Name or '\ to Escape:
NEWFILE.JED

Reading JEDEC Fuse Data from '"NEWFILE jed’ at address XXXX
Computed fusesum = YYYYH, file fusesum = ZZZZH
Computed filesum = YYYYH, file filesum = ZZZZH
Finished Reading JEDEC file 'NEWFILE.jed'.
Turbo is ON
Insert the 85¢c224 device and press return to continue or '\’ to Escape: <Enter>
Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0

Insert the 85c224 device and press return to continue or \' to Escape: \ <Enter>
Verify the specified device against the specified JEDEC file:

V -d 85C508 NEW.JED <Enter>

Reading JEDEC Fuse Data from 'NEWFILE.jed’ at address XXXX

Computed fusesum = YYYYH, file fusesum = ZZZZH

Computed filesum = YYYYH, file filesum = 2ZZZZH

Finished Reading JEDEC file 'NEW.jed'.

Insert the 85¢508 device and press return to continue or '\' to Escape: <Enter>

Verifying Device Address XXXXH - YYYYH
Finished Verifying Device, Errors = 0

Insert the 85c508 device and press return to continue or '\’ to Escape: \ <Enter>

PLDshell Plus/PLDasm User’s Guide E-29

3. Verify the specified device against the specified JEDEC file immediately after
invocation. In this case, errors are detected during the verify. The user answers Y
<Enter> when prompted to save the Verify errors in ERRORS.XOR:

c
2
=
Q.
=
Q
@
Q
Q
-
o.
<

V -d 85C224 CONTROL <Enter>

Initializing Serial Port COM3_PCPP

Initializing Device 85c224

Initializing PCPP

PCPP Version: PCPP EPROM Loader <version information>
Copyright Intel Corporation, 1986

Running Diagnostics on PCPP

Downloading ‘c:\iplsii\pcpp85.0bj’

Downloading 'c:\iplsiN85c224.dss’

Building Physical Data Base for 85c224

Reading JEDEC Fuse Data from '"NEWFILE.jed’ at address XXXX
Computed fusesum = YYYYH, file fusesum = ZZZZH
Computed filesum = YYYYH, file filesum = ZZZZH

Finished Reading JEDEC file 'CONTROL.jed".

Insert the 85¢224 device and press return to continue or '\’ to Escape: <Enter>

Verifying Device Address XXXXH - YYYYH
Errors Exist, do you want to continue? Y/N [Yly]: Y <Enter>
Saving Verify Errors in file, errors.xor

Addr 0600H File 02H Device 00HXOR 02H
Addr 0602H File 02H Device 00HXOR 02H
Addr 0604H File 02H Device 00HXOR 02H
Addr 0606H File 02H Device 00HXOR 02H
Addr 0608H File 02H Device 00HXOR 02H
Addr 060aH File 02H Device 00HXOR 02H

(Verify error messages are displayed on the same line; the current message overwrites
the previous message.)

Finished Verifying Device, Errors = 6
Turbo is ON

Insert the 85c224 device and press return to continue or '\' to Escape: \ <Enter>

E-30 PLDshell Plus/PLDasm User’s Guide

Defaults/Configuration File

This chapter describes the format of the Defaults Configuration (.CFG) file used by APT
so that users may alter parameters as desired. Figure E-2 shows the format for APT.CFG
as installed in your working directory. Note that all fields except SAVELOG and
SIOPORT are biank. Changes can be made to any field by an ASCII text editor. Figure
E-3 shows a modified APT.CFG FILE.

The first eight fields are comments and must be enclosed in quotation marks. The maxi-
mum number of characters for all fields (except the comment field) is 80. A maximum
of 512 characters may appear in the comment field. The comment fields interprets a
backslash '\’ followed by a carriage return simply as a carriage return. Initial spaces in a
comment field are not displayed, except when they appear after the '\’ + carriage return
sequence.

A YES or NO (uppercase or lowercase) are the only valid options for SAVELOG field.

SIOPORT options are PORT1 through PORTS (uppercase or lowercase). Note that the
port name in the APT.CFG file is a logical port name only and may not reflect a numer-
ical port. The PLDSHELL.CFG file maps logical APT ports to physical communications
ports, as follows:

PORT1 COM3_PCPP 9600 5 250 2000
PORT2 COMI_IUP 9600 5 2 5000
PORT3 COM2_IUP 9600 5 2 5000
PORT4 COM2_IUP 9600 5 2 5000

PORT!1 is the default port for APT. (The port description specifies the physical DOS
port and key interface parameters.

DESIGNER: “”
COMPANY: “~
DATE: “”
NUMBER: “”
REVISION: “”
EPLD: “”
COMMENT: “~
XORFILE: “”
SAVELOG: YES
SIOPORT: PORT3

Figure E-2. APT.CFG File Before Alternation

PLDshell Plus/PLDasm User’s Guide E-31

DESIGNER: “Joe Designer”

COMPANY: “New Wave Electronics”

DATE: “6/29/91"

NUMBER: "123456-789"

REVISION: *B”

EPLD: “85C508"

COMMENT: "Main Memory Decoder for i860 System"
XORFILE: “TEMP.XOR"

SAVELOG: YES

SIOPORT: PORT3

s
2
s
G
I
@
(=8
[
Q..
<,

Figure E-3. APT.CFG File After Alteration

E-32 PLDshell Plus/PLDasm User’s Guide

Appendix F — Basic PLD Information

This section provides basic information for designers who may be new to PLDs (Pro-
grammable Logic Devices). The topics include:

* What are PLDs
* Basic architecture of PLDs
¢ Why use PLDs

¢ PLD design process

What Are PLDs?

Basic

PLD:s are digital devices that can be configured by the user to implement a wide variety
of logic functions in systems. As shown in Figure F-1, PLDs have input pins, a pro-
grammable logic array, and /O pins. Many PLDs have programmable outputs that in-
crease their flexibility and thus make them suited for a wider variety of applications than
PLDs with fixed outputs.

Architecture of PLDs

PLD inputs feed the logic array, which are made up of columns and rows. Figure F-2
shows such an array. Each column pair reflects the true and complement states of an
input. Each row constitutes an AND term (also called a ‘‘product term’’, or ‘‘p-term’’
for short). Logical connections are established between different columns and rows in
the array to determine which combination of inputs will drive the p-term (AND term)
high. In Intel's CMOS PLDs, this connection is established by EPROM cells. Other
methods of making connections are used in PLDs based on different technology.

More than one p-term typically feeds an OR gate, which in turn drives the fixed or
configurable output. This summing of product terms is often referred to by the abbrevia-
tion SOP (Sum of Products). Figure F-3 shows an SOP input, followed by an invert
select bit and a fixed combinatorial output buffer. To minimize the need to feed output
signals back to input pins, internal paths back to the logic array are usually provided

(feedbacks).

Other output options may include the ability to select a registered versus a combinatorial
output, and an output enable control (one or more p-terms). Registered outputs may
contain preset and clear signals (one or more p-terms) or asynchronous clock signals
(one or more p-terms). Figure F-4 shows a registered output with a p-term to control its
output enable (OE).

PLDshell Plus/PLDasm User’s Guide F-1

FIXED OR
CONFIGURABLE
OUTPUTS
wer | P 1 e
(-, LoGIC] 3
95 o ARRAY — —3
5 E 1%
LR L3
| ® o |
| o e |
| ® *
l;>—— F— —Kj
%] I
__________ -
F100447

Figure F-1. Block Diagram of PLDs

Why Use PLDs?

The flexibility and programmability of PLDs make designing with them much quicker
than designing with discrete logic. The ability to customize PLDs for a specific applica-
tion allows a few general purpose PLDs to implement most functions once reserved for
the hundreds of devices in the ‘7400 series logic family. Use of PLDs results in a
component stock reduction in engineering and manufacturing. PLDs also take up less
space on printed circuit boards than discrete devices because more logic functions can
be fit into each PLD than with discrete devices.

On DI De tha nawt aiacticn io.
Once the decision to move from discrete logic to PLDs is made, the next question is:

‘“‘Which PLDs?’ The more flexible a PLD is, the more useful it is because a designer
can fit more logic into it. Since Intel WPLDs are supersets of common industry-standard
PLD architectures (additional flexibility), use of Intel uPLDs provides designers with an
*‘added edge’’ over other devices on the market. Chapter 7 of this guide discusses these
superset features in greater detail.

Intel uPLDs are manufactured using Intel’s patented CHMOS III semiconductor process
with EPROM cell technology that has proven itself over 20 million memory devices

F-2 PLDshell Plus/PLDasm User’s Guide

TRUE AND COMPLEMENTS OF INPUTS
ANA INA /NB INB /INC INC

|] | J | Imoéenw
¢ O ¢ O 0O

I

AND TERM #2 a
A | -l
) 1) [
L8
AND TERM #3 @ g
M)—

§6d4ddqd

EPROM CELLS ESTABLISH CONNECTIONS
BETWEEN COLUMNS AND ROWS IN CMOS PLDS

F100428
Figure F-2. AND-OR Array Used in Most PLDs
INA /NB
AND TERM #1
™) SUM-OF-
o PRODUCTS
A (SOP) gUTPUT
mogmn _v\—\ - UFFER VO PIN
& & —~ Do
AND TERM #3
™M
L INVERSION
SELECT
FEEDBACK TO
LOGIC ARRAY
F100429

Figure F-3. SOP (Sum of Products) Feeding Output Pin

PLDshell Plus/PLDasm User’s Guide F-3

OUTPUT ENABLE CONTROL

U

—D—- SUM-OF-

) PRODUCTS
9c (SOP)
o
z= D < REGISTER VO PIN
2 E — D— D a —E 3
@ E
' —{O— >
INVERSION

SELECT

DEDICATED
CLOCK

FEEDBACK TO
LOGIC ARRAY

F 100430

Figure F-4. Registered Output With Options

(billions of EPROM cells). These erasable cells allow the entire device to be pro-
grammed and tested during manufacturing to guarantee product quality. Bipolar technol-
ogy, with its one-time-programmable fuses, cannot be fully tested during manufacturing.

CMOS PLDs also consume less power than bipolar PLDs and, therefore, generate less
heat. This increases the reliability of your design and may allow you to use a less
expensive power supply. CMOS PLDs have better metastability characteristics than bi-
polar PLDs, which can also increase system reliability.

PLD Design Process

A typical process for designing with PLDs, shown in Figure F-5, is as follows:

1. Logic to be implemented in a PLD is expressed in a source file using a design
language. Design languages typically include Boolean equations, truth tables, a
form of state machine syntax, and a functional simulation syntax.

2. 'The file is processed by a logic compiler to generate a JEDEC file representation
of the design. The compiler configures the bits in the JEDEC file that make/break
connections in the logic array and configure the programmable features on the
outputs. Simulation can also be performed during processing.

F—4 PLDshell Plus/PLDasm User’s Guide

3. This JEDEC file is then used to program the PLD for its target application.

PROGRAMMING
TEXT Loaic HARDWARE AND
EDITOR COMPILER
SOFTWARE

]
O

1. CREATE DESIGN
2. COMPILE DESIGN
3. PROGRAM DEVICE(S)

ANAENEEEEE

TTTTTTTTITTTTd

F100448

Figure F-5. Typical PLD Design Process

The task of creating the source file involves knowledge of (1) the target application
requirements, (2) the device features, and (3) the way to implement device features in
the source file.

For example, let’s assume that you need a simple circuit that would be represented in
schematic form as shown in the top half of Figure F-6. You choose a PLD with combi-
natorial outputs.

The logic for this design can be expressed in the following Boolean equations:

OUTA = INA * INB
OUTB = INA * /INB

The first equation means, *‘when INA and INB are both high, drive OUTA high.”” The
second equation means, ‘‘when INA is high and INB is low, drive OUTB high.”” The
compiler processes these equations, generating the JEDEC bit values that will connect
AND terms to the proper true and complement input signals to implement these func-
tions.

PLDshell Plus/PLDasm User’s Guide F-5

o
-
a o
L
@
Q
m

INPUTS

[=]
-
o
2

I3

]
2]

Information

{outs

PDS EXAMPLE:

pins
INA INB OUTA OUTB NC ...

;equations

OUTA = INA* INB
OUTB = INA * INB

F100431

Figure F-6. Simple Combinatorial Circuit Design

When the output signal has the inversion prefix ‘‘/’’, the compiler automatically gener-
ates the proper JEDEC bits to invert the signal (inversion select bit). An active-low
version of the second equation is as follows:

/OUTB = INA * /INB

The output can also be inverted by placing the inversion prefix “‘/’ in the pin list for the

esired signal.

=

Other programmable features in PLDs are automatically selected by the compiler based
on the form the equations take. For example, when the equal sign (which selects a
combinatorial output) is changed to a colon + equal sign (:=), as follows:

/OUTA := INA * /INB

F-6 PLDshell Plus/PLDasm User’s Guide

the compiler understands this as a registered cutput and generates the appropriate
JEDEC pattern to implement the registered option. Figure F-7 shows this register in
schematic and equation form.

oE [

INVERT (TRST)

OUTPUT

INA
D Q OUTA

INB

CLK [

PDS EXAMPLE:

;pins
INA INB OUTA CLK OE NC ...
;equations

/OUTA := INA* INB
OUTA.TRST = OE

F100456

Figure F-7. Simple Registered Circuit Design

If an output enable (OE) p-term is needed to enable/disable the output buffer for this
register, the same output name is used, but an extension is added, as follows:

The ‘. TRST” extension indicates the ‘‘three-state’’ or high-impedance p-term. Other
control signals, such as Clears, Presets, or Asynchronous Clocks are implemented in a
similar manner (output name + appropriate extension).

If a simulation section is added at the end of a PLDasm source file, the PLDasm simula-
tor will simulate the design and create a file to show the results of the simulation. Figure
F-8 illustrates a simulation of a simple combinatorial design. This output file can then be
checked to see if the circuit is functioning properly.

PLDshell Plus/PLDasm User’s Guide F-7

LOGIC
ARRAY

INPUTS MACROCELLS OUTPUTS

INA [

> OUTA

U

Basic PLD

I3
o
=
«
£
£
o
2
£

I
I
I
I
f
I
I
|
|
|
I

{_>ouTB

I
|
I
I
I
|
I
I
I
I
|
I
I

PDS SIMULATION EXAMPLE:

SIMULATION
; OUTA and OUTB should go low
SETF /INA INB
;OUTA should stay low; OUTB should go high
SETF INA /INB
;OUTA should stay low; OUTB should go low
SETF /INA INB
;OUTA should go high; OUTB should stay low F100521
SETF INA INB

Figure F-8. Simple Combinatorial Circuit Simulation

The example uses Boolean equation syntax to implement the design. Two other types of
syntax are supported for designs: State Machine syntax, and Truth Table syntax. These
different ways of describing designs allow designers to choose the method most familiar
to them and best suited for the target application.

The main body of this user’s guide describes the features of Intel UPLDs and shows how
to take advantage of those features in PLDasm syntax.

F-8 PLDshell Plus/PLDasm User’s Guide

Index

iPLD16V8XP, 1-5, 7-3 Alternate /O Options, 4-15
iPLD20V8XP, 1-5, 7-3 APT Commands, E-12
iPLD22V10, 1-5, 7-3, 7-8 BLANKCHECK, E-13
iPLD610, 1-5, 7-3, 7-11 CHECKSUM, E-13
iPLD910, 1-5, 7-3, 7-14 Command Arguments, E-12
DEFAULTS, E-13
16L8 PLD, 1-5, 7-3 EXIT, E-13
16R4 PLD, 1-5, 7-3 HELP, E-13
16R6 PLD, 1-5, 7-3 PROGRAM, E-13
16R8 PLD, 1-5, 7-3 QUIT, E-13
16V8 PLD, 1-5, 7-3 READ, E-13
20L8 PLD, 1-5, 7-3 VERIFY, E-13
20R4 PLD, 1-5,7-3 APT Description, E-1
20R6 PLD, 1-5, 7-3 APT Error Messages, E-11
20R8 PLD, 1-5, 7-3 APT Files, E-8
20V8 PLD, 1-5, 7-3 Command Line Invocation, E-9
22VI10PLD, 1-5,7-3 Defaults/Configuration File, E-31
22VP10 PLD, 1-5, 7-3 Filename Conventions, E-11
Overview, E-1
5AC312, 1-5, 7-2, 7-19 Sample Session, E-2
5AC324, 1-5, 7-2, 7-23 Session Defaults, E-10
5C031, 1-5, 7-2, 7-27 APT Files, E-8
*5C032, 1-5, 7-2, 7-31 architectures (device)
5C060, 1-5, 7-2, 7-33 iPLD16V8XP, 7-3
5C090, 1-5, 7-2, 7-36 iPLD20V8XP, 7-3
5C180, 1-5, 7-2, 7-39 iPLD22V10, 7-8
85C060, 1-5, 7-2, 7-11 iPLD610, 7-11
85C090, 1-5, 7-2, 7-14 iPLD910, 7-14
85C220, 1-5, 7-2, 7-5 5AC312, 7-19
85C224, 1-5, 7-2,7-6 5AC324, 7-23
85C22V10, 1-5,7-2,7-8 5C031, 7-27
85C508, 1-5, 7-2, 7-18 5C032, 7-31, 7-33
5C090, 7-36
A 5C180, 7-39
ACLK extension, 4-10, 4-12 85C060, 7-11
Active-High/Active-Low Outputs, 4-7 - 4-8 85C090, 7-14
ADF/SMF Translation, 6-7 85€220, 7-5
Overview, 1-8 85C224,7-6
Allocation of P-Terms, 4-21 85C22v10, 7-8
.ALE extension, 4-10 85C508, 7-18 .)
Altering Set-Up and Hold Times, 4-25 ASSIGNMENTS simulation syntax, 4-42
Altering tsu/tco Times, 4-25 Asynchronous Clocking, 4-12

PLDshell Plus/PLDasm User’s Guide Index-1

Automatic Inversion, 5-9
Automatic Pin Assignments, 4-18

B

Basic Architecture of PLDs, F-1
Basic Circuit Design Using Boolean
Equations

Combinatorial Circuits, 4-6
Basic PLD Information, F-1

Basic Architecture of PLDs, F-1

PLD Design Process, F-4

What Are PLDs?, F-1

Why Use PLDs?, F-2
BEGIN/END simulation flow control, 4-40
Bidirectional I/O, 4-19
Binary State Assignment, 4-33

BLANKCHECK APT command, E-13 - E-14

Boolean Equations, 4-11
Boolean Operators, A-2
Buried Macrocells, 4-20, 4-23

C

CHECK simulaftion command, 4-40
Checklist
Design, 8-1
CHECKSUM APT command, E-13, E-16
Chip Field, 4-5
Clear P-Term, 4-12
.CLKF extension, 4-9 - 4-10
CLOCKEF simulation command, 4-39
Clocking
Asynchronous, 4-12, 4-25
Synchronous, 4-9, 4-25
Combinatorial Circuits, 4-6 - 4-7
Command Line Interface, D-1
Compile Commands and Options, D-2
Comments, 4-1
Compile Commands and Options, D-2
Compilation Examples, D-3
Compile Options Submenu, 3-7
Automatic Inversion, 3-7
Error File, 3-8
Expand Equations, 3-7
Fitter Options, 3-8
Minimize (Espresso), 3-7
Report File, 3-8

Save Compile Options, 3-8
Compile/Sim, 3-5
Compile Options, 3-6
Processing, 3-5
Simulation Options, 3-6
Source Filename, 3-5
Cuinpiler Options, 5-8
Automatic Inversion, 5-9
Error File, 5-9
Expand Equations, 5-8
Fitter Options, 5-10
Minimize (Espresso), 5-8
Report File, 5-10

Conditional Operators (Simulation Only), A-3

CONDITIONALS simulation syntax, 4-42
CONDITIONS keyword, 4-30, 4-36
Configuration File, C-1
Conversion, 6-4
Notes, 6-5
Overview, 1-7
Conversion Commands and Options, D-5
Conversion Examples, D-5
Convert Submenu, 3-23
Input Filename, 3-23
Output Filename, 3-23
Package Type, 3-23
Source Device, 3-23

D

.D extension, 4-10
Databook Menu, 3-26
Compiler Support, 3-27
Datasheet Briefs, 3-26
Order Codes, 3-27
Programming Support, 3-27
Technical Notes, 3-26
Declaration Section, 4-1 - 4-2, 4-4
Author Field, 4-3
Chip Fieid, 4-5
Company Field, 4-3
Date Field, 4-3
Design Name, 4-5
Device Name, 4-5
Options Field, 4-3
Pattern Field, 4-1
Pin Names, 4-5

Index-2 PLDshell Plus/PLDasm User’s Guide

Revision Field, 4-3
String Field, 4-6
Title Field, 4-1
DEFAULT_BRANCH keyword, 4-30 - 4-31,
4-33
DEFAULT_OUTPUT keyword, 4-30
DEFAULTS APT command, E-13, E-18
Design Checklist, 8-1
Design Compilation
Overview, 1-3
Design Methodologies, 5-1
Design Name, 4-5
Design Name Field, 4-5
Design Sections, 4-2
device architectures
iPLD16V8XP, 7-3
iPLD20V8XP, 7-3
iPLD22V10, 7-8
iPLD610, 7-11
iPLD910, 7-14
5AC312,7-19
5AC324, 7-23
5C031, 7-27
5C032, 7-31
5C060, 7-33
5C090, 7-36
5C180, 7-39
85C060, 7-11
85C090, 7-14
85C220, 7-5
85C224,7-6
85C22V10, 7-8
85C508, 7-18
Device Name, 4-5
Device-Independent Design, 5-1 - 5-2
Notes, 5-5
Sample Design, 5-2
Device-Specific Design, 5-1, 5-6
Notes, 5-7
Disassemble Submenu, 3-22
Input Filename, 3-22
Output Filename, 3-22
Package Type, 3-22
Source Device, 3-22
Disassembler Commands and Options, D-4
Disassembly Example, D-4
Disassembly, 6-1

Notes, 6-3
Overview, 1-6
Disconnected Macrocells, 4-23
DOS Shell Notes, 3-3
Dual Feedback, 4-20
Dual Feedback with Bidirectional 1/O, 4-20

E

Edit Menu, 3-4

Change Editor, 3-4

Editor, 3-4

Filename, 3-4
ENABLE input, 4-14
Equations Section, 4-2
Error File, 5-9
Error Files

Viewing, 1-5

Viewing Error Help Information, 1-5
Example Designs

4-Bit Counter (4COUNT), 1-2

See Sample Designs
EXIT APT command, E-13, E-20
Expand Equations, 5-8
EXPRESSIONS simulation syntax, 4-42
extensions (signal)

.ACLK, 4-10

.ALE, 4-10

.CLKF, 4-10

D, 4-10

.FB, 4-10, 5-14

K, 4-10

LE, 4-10

R, 4-10

RSTF, 4-10

.S, 4-10

.SETF, 4-10

T, 4-10

.TRST, 4-10

F
FB extension, 4-10, 5-14
Fitter Options, 5-10
Ignore All Pin Assignments, 5-11
Use Pin Assignments, Abort on no Fit, 5-10
Use Pin Assignments, But Reassign if
Needed, 5-11

PLDshell Plus/PLDasm User’s Guide Index-3

Flow Control, 4-40

FOR/TO/DO loop simulation flow control,
4-41

Function Keys, 3-1

Fuse Counts (PALs/GALs), 6-4

G

Getting Started, 1-1

Global SevReset Signals, 4-14
Graphics Waveform Viewer, 3-13
Gray Code State Assignment, 4-33

H

HELP APT command, E-13, E-21
Help Information (online), 3-1
HOLD_STATE keyword, 4-31

I

I/O Keywords

BURIED, 4-17

CMBFBK, 4-17

COMBINATORIAL or COMB, 4-17

HIGH, 4-8, 4-17

1/0, 4-17

INPUT, 4-17

LATCHED, 4-17

LATFBK, 4-17

LOW, 4-8, 4-17

OUTPUT, 4-17

PINFBK, 4-17

REGFBK, 4-17

REGISTERED or REG, 4-17
IF/THEN/ELSE simulation flow control, 4-42
Installation

AUTOEXEC File, 2-1

CONFIG File, 2-1

Notes, 2-2

Procedure, 2-1

System Requirements, 2-1
Installation Notes

Environment Space, 2-2

Network, 2-2

Old Versions, 2-3

PATH Variable, 2-2

Windows 3.0, 2-3

With iPLS II, 2-2

With Other Programs, 2-3
INTEL_ARCH, 5-6
Internal Nodes

.FB, 5-14
Invoking PLDshell Plus, 1-1, 3-1
iPLD16V8XP PLD, 1-5

J

J extension, 4-10, 4-14

JEDEC
Conversion Overview, 1-7
Disassembly Overview, 1-6

JEDEC Conversion, 6-4

JEDEC Disassembly, 6-1
Notes, 6-3

JK Flip-Flops, 4-14

K

K extension, 4-10, 4-14
Keywords and Reserved Words, A-1

L

Language Reference Summary, A-1
Latched Inputs, 4-24

LATCHED keyword, 4-24

.LE extension, 4-10

Legal Signal Name Characters, 4-1

M

Machine Defaults, 4-30
Main Menu, 3-2
Compile/Sim, 3-2
Databook, 3-3
Edit, 3-2
Program, 3-3
Quit, 3-3
Run, 3-3
Utilities, 3-3
View, 3-2
Mealy State Machine Example, 4-36
MEALY_MACHINE, 4-28
Menus
Compile Options Submenu, 3-7
Compile/Sim, 3-5
Databook Menu, 3-26
Edit Menu, 3-4

Index-4 PLDshell Plus/PLDasm User’s Guide

Main Menu, 3-2

Program Menu, 3-16

Run Menu, 3-17

Simulation Options Submenu, 3-9
Utilities Menu, 3-20

View Menu, 3-10

View Simulation Vectors Submenu, 3-11

View Waveform Commands, 3-13
Minimize (Espresso), 5-8
Modify Options Submenu, 3-25
Command File, 3-25
Menu Hotkeys, 3-25
Print Devices, 3-25
Programming S/W, 3-25
Source Extension, 3-26
Text Editor, 3-25
Modify Run Submenu, 3-17
Moore State Machine Example, 4-29
MOORE_MACHINE, 4-28

N

NEXT_STATE keyword, 4-33, 4-35
Notes
Conversion, 6-5
Device-Independent Design, 5-5
Device-Specific Design, 5-7
Disassembly, 6-3
Installation, 2-2
Run Menu Notes, 3-18
Simulation Notes, 5-13
Test Vector Notes, 5-14
Translation, 6-8
Viewer Notes, 3-15

(0]

One Hot State Assignment, 4-34
Options Field

Security Bit, 4-3

Turbo Bit, 4-3
Other Design Tools, 1-8
Output Enable, 4-8 - 4-9
OUTPUT_HOLD keyword, 4-30

P

P-Term Allocation, 4-21
Pin Declarations, 4-18

pin feedback, 4-15 - 4-16
Pin Names, 4-5
PLD Design Process, F-4
PLDasm

Compiler Options, 5-8

Overview, 1-3

PLDasm Files, 4-1
PLDasm Files, 4-1

Comments, 4-1

Declaration Section, 4-1

Legal Signal Name Characters, 4-1
PLDshell

Configuration File, C-1
PLDshell Plus

Introduction, 1-1

Invoking, 1-1, 3-1

Overview, 1-2

PLDshell Plus Menus, 3-1
PLDSHELL.CFG, C-1
Preloads

Register, 4-39, 5-14
Preset P-Term, 4-12
PRLDF simulation command, 4-39
Processing

Compile Only, 3-6

Compile Then Simulation, 3-5

Simulate Only, 3-6
PROGRAM APT command, E-13, E-22
Program Menu, 3-16

Change Programming S/W, 3-16
Programmable Inputs, 4-24

Q
QF Record JEDEC), 6-4
QUIT APT command, E-13, E-25

R

.R extension, 4-10, 4-14

READ APT command, E-13, E-26
Register Preloads, 4-39, 5-14
Registered Circuits, 4-9, 4-11
registered feedback, 4-15

Registered Inputs, 4-24
REGISTERED keyword, 4-24
Report File, 5-10

Reserved Words and Keywords, A-1

PLDshell Plus/PLDasm User’s Guide Index-5

.RSTF extension, 4-10, 4-12, 4-14
Run Menuy, 3-17
Modify Run Submenu, 3-17
Run Menu Notes, 3-18
Run Menu Notes
Example Entry, 3-18
Modifying the Menu, 3-18
Using Run With TSRs, 3-19

S

.S extension, 4-10, 4-14

Sample Designs, 9-1
16COUNT.PDS, 9-1
24COUNT.PDS, 9-1
2BIT.PDS, 9-2
4COUNT.PDS, 9-1
4ERROR.PDS, 9-1
7SEG.PDS, 9-1
ADDRI1.PDS, 9-1
BUSCONI1.PDS, 9-2
CASCADE.PDS, 9-1
DOUBLCNT.PDS, 9-2
EX16R6.JED, 9-2
EX20L8.JED, 9-2
EX20V8.JED, 9-2
EXMEALY1.PDS, 9-2
MACFILE.SMF, 9-3
MANYMACH.SMF, 9-3
MEMCONT.PDS, 9-2
ONESHOT.PDS, 9-2
PS2POS.PDS, 9-1
SAMPI1.ADF, 9-3
STATEDEC.PDS, 9-2
SUMMARY.PDS, 9-1
TCOUNT.PDS, 9-1
TEMPLATE.PDS, 9-1
UPDOWN.PDS, 9-2

Security Bit, 4-3

.SETF extension, 4-10, 4-12, 4-14

SETF simulation command, 4-39

Show Asynchronous Events simulation

option, 5-11

Signal Extensions, 4-10, A-2

Simulation, 4-38
Simulation Syntax, 4-39

Simulation Commands
CHECK, 4-40
CLOCKEF, 4-39
PRLDF, 4-39
SETF, 4-39
TRACE_ON/TRACE_OFF, 4-39
VECTOR, 4-39

Simulation Flow Control
BEGIN/END, 4-40
FOR/TO/DO loop, 4-41
IF/THEN/ELSE, 4-42
WHILE/DO loop, 4-41

Simulation Notes, 5-13

Simulation Options, 5-11
Show Asynchronous Events, 5-11
Threshold, 5-11

Simulation Options Submenu, 3-9
Max. Asynch. Events, 3-9
Save Simulation Options, 3-9
Show Asynch. Events, 3-9

Simulation Output Files, 5-11

Simulation Section, 4-2

Simulation Syntax, 4-39
ASSIGNMENTS, 4-42
Basic Commands, 4-39
CONDITIONALS, 4-42
EXPRESSIONS, 4-42
Flow Control, 4-40

SR Flip-Flops, 4-14

State Assignments, 4-33
Binary State Assignment, 4-33
Gray Code State Assignment, 4-33
One Hot State Assignment, 4-34

STATE keyword, 4-28, 4-30

State Machine Design, 4-28

State Machine Format (Moore Machine), 4-30
Machine Defauits, 4-30
State Assignments, 4-33
State Transitions, 4-34
Transition Conditions, 4-36
Transition Outputs, 4-35

State Machine Secion, 4-2

State Transitions, 4-34

String Field, 4-6

Supported PLDs, 1-5

Index-6 PLDshell Plus/PLDasm User’s Guide

T

.T extension, 4-10, 4-13
T_TAB keyword, 4-27
Test Vector Notes, 5-14
Test Vectors, 5-14
Threshold simulation option, 5-11
Toggle Flip-Flops, 4-13
Toggling Between Windows, 3-11, 3-15
TRACE_ON/TRACE_OFF simulation
commands, 4-39
Transition Conditions, 4-36
Transition Outputs, 4-35
Translate Submenu, 3-24
Input Filename, 3-24
Output Filename, 3-24
Translation, 6-7
Example, 6-7
Notes, 6-8
Overview, 1-8
Translation Commands and Options, D-6
Translation Examples, D-6
Troubleshooting, 8-1
.TRST extension, 4-10
Truth Table Design, 4-27
Truth Table Section, 4-2
TSRs, 3-19
Turbo Bit, 4-3
Tutorial, 1-2

U

Using the PLDasm Compiler Options, 5-8
Using the Simulation Options, 5-11
Utilities Menu, 3-20

Convert, 3-20

Convert Submenu, 3-23

Disassemble, 3-20

Disassemble Submenu, 3-22

Invoke DOS Shell, 3-20

List Directory, 3-20

Modify Options, 3-21

Modify Options Submenu, 3-25

Set Directory, 3-20

Translate, 3-20

Translate Submenu, 3-24
Utilization Report, B-1

Header and Source Listing, B-2

Inputs Table, B-2

Macrocell Interconnection Cross Refer-
ence, B-5

Outputs Table, B-3

Part Utilization, B-5

Pin Connections, B-2

Unused Resources, B-4

v

VECTOR simulation command, 4-39
VERIFY APT command, E-13, E-28
View Files

Toggling Between Windows, 3-11, 3-15
View Menu, 3-10

Any Other File, 3-11

Error/Log Files, 3-10

Report Files, 3-10

Source Files, 3-10

Vector/Waveform Files, 3-11
View Simulation Vectors Submenu, 3-11

HST Sim File, 3-11

Print Page Length, 3-12

Print Vectors as, 3-12

Print Waveforms, 3-12

Save View Options, 3-12

View Vectors as, 3-12
View Waveform Commands

Key Pad Functions, 3-14

Mouse Functions, 3-13
Viewing Simulation Output Files, 5-11
virtual pin, 4-14

w

Waveform Viewing
Editing Waveforms, 3-13
Zooming In/Out, 3-13
What Are PLDs?, F-1
WHILE/DO loop simulation flow control,
441
Why Use PLDs?, F-2
Windows 3.0
Configuration Notes, 2-3

Z
Zooming on Waveforms, 3-14

PLDshell Plus/PLDasm User’s Guide Index-7

Index-8 PLDshell Plus/PLDasm User’s Guide

INTEL CORPORATION
3065 BOWERS AVENUE
SANTA CLARA, CA 95051

© 1992 Intel Corporation
Printed in U.S.A /0392/5K/TB/TS
Programmable Logic
Order Number: 468816-002

	02434991 intel.tif
	02434992.tif
	02434993.tif
	02434994.tif
	02434995.tif
	02434996.tif
	02434997.tif
	02434998.tif
	02434999.tif
	02435000.tif
	02435001.tif
	02435002.tif
	02435003.tif
	02435004.tif
	02435005.tif
	02435006.tif
	02435007.tif
	02435008.tif
	02435009.tif
	02435010.tif
	02435011.tif
	02435012.tif
	02435013.tif
	02435014.tif
	02435015.tif
	02435016.tif
	02435017.tif
	02435018.tif
	02435019.tif
	02435020.tif
	02435021.tif
	02435022.tif
	02435023.tif
	02435024.tif
	02435025.tif
	02435026.tif
	02435027.tif
	02435028.tif
	02435029.tif
	02435030.tif
	02435031.tif
	02435032.tif
	02435033.tif
	02435034.tif
	02435035.tif
	02435036.tif
	02435037.tif
	02435038.tif
	02435039.tif
	02435040.tif
	02435041.tif
	02435042.tif
	02435043.tif
	02435044.tif
	02435045.tif
	02435046.tif
	02435047.tif
	02435048.tif
	02435049.tif
	02435050.tif
	02435051.tif
	02435052.tif
	02435053.tif
	02435054.tif
	02435055.tif
	02435056.tif
	02435057.tif
	02435058.tif
	02435059.tif
	02435060.tif
	02435061.tif
	02435062.tif
	02435063.tif
	02435064.tif
	02435065.tif
	02435066.tif
	02435067.tif
	02435068.tif
	02435069.tif
	02435070.tif
	02435071.tif
	02435072.tif
	02435073.tif
	02435074.tif
	02435075.tif
	02435076.tif
	02435077.tif
	02435078.tif
	02435079.tif
	02435080.tif
	02435081.tif
	02435082.tif
	02435083.tif
	02435084.tif
	02435085.tif
	02435086.tif
	02435087.tif
	02435088.tif
	02435089.tif
	02435090.tif
	02435091.tif
	02435092.tif
	02435093.tif
	02435094.tif
	02435095.tif
	02435096.tif
	02435097.tif
	02435098.tif
	02435099.tif
	02435100.tif
	02435101.tif
	02435102.tif
	02435103.tif
	02435104.tif
	02435105.tif
	02435106.tif
	02435107.tif
	02435108.tif
	02435109.tif
	02435110.tif
	02435111.tif
	02435112.tif
	02435113.tif
	02435114.tif
	02435115.tif
	02435116.tif
	02435117.tif
	02435118.tif
	02435119.tif
	02435120.tif
	02435121.tif
	02435122.tif
	02435123.tif
	02435124.tif
	02435125.tif
	02435126.tif
	02435127.tif
	02435128.tif
	02435129.tif
	02435130.tif
	02435131.tif
	02435132.tif
	02435133.tif
	02435134.tif
	02435135.tif
	02435136.tif
	02435137.tif
	02435138.tif
	02435139.tif
	02435140.tif
	02435141.tif
	02435142.tif
	02435143.tif
	02435144.tif
	02435145.tif
	02435146.tif
	02435147.tif
	02435148.tif
	02435149.tif
	02435150.tif
	02435151.tif
	02435152.tif
	02435153.tif
	02435154.tif
	02435155.tif
	02435156.tif
	02435157.tif
	02435158.tif
	02435159.tif
	02435160.tif
	02435161.tif
	02435162.tif
	02435163.tif
	02435164.tif
	02435165.tif
	02435166.tif
	02435167.tif
	02435168.tif
	02435169.tif
	02435170.tif
	02435171.tif
	02435172.tif
	02435173.tif
	02435174.tif
	02435175.tif
	02435176.tif
	02435177.tif
	02435178.tif
	02435179.tif
	02435180.tif
	02435181.tif
	02435182.tif
	02435183.tif
	02435184.tif
	02435185.tif
	02435186.tif
	02435187.tif
	02435188.tif
	02435189.tif
	02435190.tif
	02435191.tif
	02435192.tif
	02435193.tif
	02435194.tif
	02435195.tif
	02435196.tif
	02435197.tif
	02435198.tif
	02435199.tif
	02435200.tif
	02435201.tif
	02435202.tif
	02435203.tif
	02435204.tif
	02435205.tif
	02435206.tif
	02435207.tif
	02435208.tif
	02435209.tif
	02435210.tif
	02435211.tif
	02435212.tif
	02435213.tif
	02435214.tif
	02435215.tif
	02435216.tif
	02435217.tif
	02435218.tif
	02435219.tif
	02435220.tif
	02435221.tif
	02435222.tif
	02435223.tif
	02435224.tif
	02435225.tif
	02435226.tif
	02435227.tif
	02435228.tif
	02435229.tif
	02435230.tif
	02435231.tif
	02435232.tif
	02435233.tif
	02435234.tif
	02435235.tif
	02435236.tif
	02435237.tif
	02435238.tif
	02435239.tif
	02435240.tif

